Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейное уравнение





 

 

Существует два метода решения линейного уравнения: метод вариации произвольной постоянной и метод подстановки.

Метод вариации произвольной постоянной будет встречаться нам часто: при решении неоднородных линейных уравнений высшего порядка, при решении неоднородных систем линейных уравнений. Его надо знать твердо.

 

При решении методом вариации произвольной постоянной сначала решают однородное уравнение (с нулевой правой частью)

Это – уравнение с разделяющимися переменными.

.

Затем варьируют произвольную постоянную, полагая .

.

Подставляем в неоднородное уравнение:

.

При вариации произвольной постоянной здесь обязательно должны сократиться два члена, в этом идея метода.

, где С – произвольная постоянная.

.

Видно, что общее решение неоднородного уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения. Это справедливо не только для линейных уравнений первого порядка, но и для линейных уравнений высших порядков, и для линейных систем. Там подобное утверждение называется теоремой о структуре общего решения неоднородного уравнения или системы.

Замечание. Решая уравнение методом вариации, обязательно приводите его к виду (если при стоит коэффициент, то делить на него обязательно), иначе метод вариации даст ошибку.

 

 

При решении методом подстановки полагают

. Мы видели выше, что решение действительно является произведением двух функций от x. Этот факт здесь и используется.

. Подставляем в уравнение:

.

Теперь решают либо уравнение , определяя отсюда

, либо уравнение , определяя отсюда

. Здесь при интегрировании не надо добавлять константу, она появится позже, при отыскании второй функции. В первом случае, остается найти v из .

Теперь = , как и выше.

Во втором случае остается найти u из , .

Теперь = , как и выше.

 

Пример. .

 

Решение методом вариации. Приводим уравнение, деля на коэффициент при :

.

Решаем однородное уравнение .

Варьируем произвольную постоянную .

Подставляем в неоднородное уравнение

.

 

Решение методом подстановки.

.

 







Дата добавления: 2015-04-16; просмотров: 432. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия