Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение Бернулли





 

Если n = 1, то это – уравнение с разделяющимися переменными, если n = 0, то это – линейное уравнение.

Заметим, что при n > 0 - решение уравнения.

 

Решать уравнение Бернулли можно тремя способами

 

1) сведение к линейному уравнению заменой

Разделим обе части уравнения на ,

Получили линейное уравнение относительно .

Этот метод применяется редко, так как уравнение Бернулли можно решать теми же методами, что и линейное уравнение, не приводя его предварительно к линейному.

 

2) Решение методом вариации произвольной постоянной.

Решение проводится аналогично линейному уравнению.

Решим сначала однородное уравнение, полагая правую часть уравнения нулевой.

.

Затем ищем решение уравнения в виде , варьируя произвольную постоянную ,

вычисляем и подставляем в исходное уравнение.

.

Вновь, как и в линейном уравнении, два слагаемых сокращаются, получаем уравнение с разделяющимися переменными.

Определяя отсюда функцию , подставляем ее в .

 

3) Решение методом подстановки.

Полагаем , подставляем в исходное уравнение

.

Точно так же, как при решении линейного уравнения, решаем, например, уравнение . Подставляем полученную функцию, решаем «оставшееся» уравнение с разделяющимися переменными .

Заметим, что оно получилось точно таким же, как в методе вариации. Поэтому вторая функция в методе подстановки и есть та самая варьируемая постоянная. Затем записываем решение .

Видим, что метод вариации и метод подстановки, фактически, один и тот же метод. Просто в методе подстановки с самого начала используется то, что решение представляется в виде произведения двух функций независимой переменной.

 

Пример.

Решим это уравнение Бернулли методом вариации произвольной постоянной.

,

,

 







Дата добавления: 2015-04-16; просмотров: 404. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия