З а д а ч а 11
Лекция 1 Неопределенный интеграл, таблица интегралов. 2
Лекция 2. Методы интегрирования и таблица интегралов. 4
Лекция 3. Интегрирование рациональных функций. 8
Лекция 4. Интегрирование иррациональных и 14 тригонометрических функций.
Лекция 5. Определенный интеграл. 18
Лекция 6. Формула Ньютона – Лейбница. 22
Лекции 7, 8 Несобственные интегралы. 25
Лекции 9-10. Приложения определенного интеграла. 32
Лекция 11. Дифференциальные уравнения. 37
Лекция 12. Основные типы дифференциальных уравнений 39 первого порядка.
Лекция 13. Геометрическая интерпретация дифференциальных 47 уравнений 1 порядка, изоклины. Особые точки и особые решения.
Лекция 14. Дифференциальные уравнения высших порядков. 50
Лекции 15–16. Линейные дифференциальные уравнения 53 n –ого порядка с переменными коэффициентами.
Лекции 17-18. Линейные дифференциальные уравнения с 61 постоянными коэффициентами.
Лекции 19-20. Нормальные системы дифференциальных уравнений. 68
Лекция 21. Системы линейных дифференциальных уравнений. 76
Лекция 22. Однородные системы линейных дифференциальных 82 уравнений с постоянными коэффициентами. Лекции 23-24. Устойчивость движения, классификация точек покоя, 87 теоремы Ляпунова.
Лекция 25. Приближенное вычисление интеграла. 95
Лекция 26. Обзор численных методов решения задачи Коши 98 Приближенное значение работы А силы на всем отрезке [a; b] есть Механический смысл определенного интеграла
З а д а ч а 11 Правило 1. Чтобы вычислить , нужно вместо переменной х поставить её предельное значение . Если то Если то . Если то - неопределенность. Правило 2. Чтобы раскрыть неопределенность в алгебраическом выражении, надо в числителе и знаменателе выделить множитель , который стремится к нулю, и на него под знаком предела сократить. Правило 3. Если в числителе и знаменателе стоят многочлены, то чтобы получить множитель , нужно многочлены разложить на множители.
|