Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Преобразование передаточных функций звеньев в дифференциальные уравнения в форме Коши





1) Интегрирующее звено.

Из передаточной функции интегрирующего звена

следует искомое дифференциальное уравнение:

Эквивалентная структурная схема (рис.4.25) состоит из последовательно соединенных элементарных звеньев с передаточными функциями ki и 1/p

Рис.4.25. Структурная схема

2) Апериодическое звено.

Передаточная функция звена:

откуда

или

Полученному дифференциальному уравнению соответствует эквивалентная структурная схема на рис.4.26.

Рис.4.26. Структурная схема

3) Колебательное звено.

Колебательное звено описывается дифференциальным уравнением второго порядка, которому равносильна система из двух уравнений первого порядка. Преобразовывая выражение для передаточной функции звена

получаем

Введем обозначение pYi +1 = Yi в последнее уравнение. Получим:

Система дифференциальных уравнений в форме Коши для колебательного звена имеет вид:

Эквивалентная структурная схема этого звена изображена на рис.4.27.

Рис. 4.27. Структурная схема

4) Дифференцирующее звено с замедлением.

Запишем передаточную функцию звена в виде

Эквивалентная структурная схема (рис.4.28) включает элементарное усилительное звено с передаточной функцией ki /Ti и рассматривавшееся выше апериодическое звено. Таким образом, для описания дифференцирующего звена с замедлением можно использовать уравнение для апериодического звена путем вычитания сигнала Yi из сигнала .

Рис. 4.28. Структурная схема

5) Сложное звено.

В структурной схеме исследуемой динамической системы может встретиться сложное звено с передаточной функцией

Такое звено можно описать с помощью двух дифференциальных уравнений первого порядка. Чтобы их получить, выполним с передаточной функцией следующие преобразования:

Введя обозначение , перепишем последнее уравнение в виде:

Раскроем скобки.

Упростив, получаем дифференциальные уравнения первого порядка в форме Коши.

С целью сокращения записи представим эти уравнения в виде:

где .

На рис. 4.29 дана эквивалентная структурная схема рассмотренного звена.

Рис. 4.29. Структурная схема

Если степень полинома в числителе передаточной функции элемента равна степени полинома в её знаменателе, то необходимо на структурной схеме системы представить этот элемент как параллельное соединение двух эле-ментов в соответствии со следующими формулами:

где ;

где .

Если степень полинома в числителе передаточной функции элемента равна степени полинома в её знаменателе, причем знаменатель имеет действительные корни, то знаменатель можно разложить на сомножители. Тогда на структурной схеме системы можно представить этот элемент как параллельное соединение двух элементов в соответствии со следующей схемой:

Требуется найти неизвестные коэффициенты, обозначенные как x и y. Преобразуем последнее уравнение.

(4.4)

При p = 0 y = b2. (4.5)

Решая уравнения (4.4) и (4.5) совместно, определяем другой неизвестный коэффициент x.

Рассмотрим второй пример.

откуда

(4.6)

При p = 0 x + y = b2. (4.7)

Решаем уравнения (4.6) и (4.7) совместно. Получаем:

Если степень полинома в числителе передаточной функции элемента больше степени полинома в её знаменателе, то этот элемент следует объединить с одним или несколькими другими элементами структурной схемы с целью получения результирующей передаточной функции, у которой степень полинома в числителе не превышает степень полинома в знаменателе.

Рис. 4.30 Функциональная схема







Дата добавления: 2015-04-16; просмотров: 1913. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия