Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Преобразование передаточных функций звеньев в дифференциальные уравнения в форме Коши





1) Интегрирующее звено.

Из передаточной функции интегрирующего звена

следует искомое дифференциальное уравнение:

Эквивалентная структурная схема (рис.4.25) состоит из последовательно соединенных элементарных звеньев с передаточными функциями ki и 1/p

Рис.4.25. Структурная схема

2) Апериодическое звено.

Передаточная функция звена:

откуда

или

Полученному дифференциальному уравнению соответствует эквивалентная структурная схема на рис.4.26.

Рис.4.26. Структурная схема

3) Колебательное звено.

Колебательное звено описывается дифференциальным уравнением второго порядка, которому равносильна система из двух уравнений первого порядка. Преобразовывая выражение для передаточной функции звена

получаем

Введем обозначение pYi +1 = Yi в последнее уравнение. Получим:

Система дифференциальных уравнений в форме Коши для колебательного звена имеет вид:

Эквивалентная структурная схема этого звена изображена на рис.4.27.

Рис. 4.27. Структурная схема

4) Дифференцирующее звено с замедлением.

Запишем передаточную функцию звена в виде

Эквивалентная структурная схема (рис.4.28) включает элементарное усилительное звено с передаточной функцией ki /Ti и рассматривавшееся выше апериодическое звено. Таким образом, для описания дифференцирующего звена с замедлением можно использовать уравнение для апериодического звена путем вычитания сигнала Yi из сигнала .

Рис. 4.28. Структурная схема

5) Сложное звено.

В структурной схеме исследуемой динамической системы может встретиться сложное звено с передаточной функцией

Такое звено можно описать с помощью двух дифференциальных уравнений первого порядка. Чтобы их получить, выполним с передаточной функцией следующие преобразования:

Введя обозначение , перепишем последнее уравнение в виде:

Раскроем скобки.

Упростив, получаем дифференциальные уравнения первого порядка в форме Коши.

С целью сокращения записи представим эти уравнения в виде:

где .

На рис. 4.29 дана эквивалентная структурная схема рассмотренного звена.

Рис. 4.29. Структурная схема

Если степень полинома в числителе передаточной функции элемента равна степени полинома в её знаменателе, то необходимо на структурной схеме системы представить этот элемент как параллельное соединение двух эле-ментов в соответствии со следующими формулами:

где ;

где .

Если степень полинома в числителе передаточной функции элемента равна степени полинома в её знаменателе, причем знаменатель имеет действительные корни, то знаменатель можно разложить на сомножители. Тогда на структурной схеме системы можно представить этот элемент как параллельное соединение двух элементов в соответствии со следующей схемой:

Требуется найти неизвестные коэффициенты, обозначенные как x и y. Преобразуем последнее уравнение.

(4.4)

При p = 0 y = b2. (4.5)

Решая уравнения (4.4) и (4.5) совместно, определяем другой неизвестный коэффициент x.

Рассмотрим второй пример.

откуда

(4.6)

При p = 0 x + y = b2. (4.7)

Решаем уравнения (4.6) и (4.7) совместно. Получаем:

Если степень полинома в числителе передаточной функции элемента больше степени полинома в её знаменателе, то этот элемент следует объединить с одним или несколькими другими элементами структурной схемы с целью получения результирующей передаточной функции, у которой степень полинома в числителе не превышает степень полинома в знаменателе.

Рис. 4.30 Функциональная схема







Дата добавления: 2015-04-16; просмотров: 1913. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия