Пример 4.1
Требуется построить структурную схему гидравлического демпфера (амортизатора) с учетом массы подвижных частей. За входную величину принята сила, а за выходную – перемещение поршня (Рис.4.15). Рис. 4.15. Демпфер (амортизатор) где F - внешняя сила; F г - гидростатическая сила; F и – инерционная сила; x - перемещение поршня; P1,P2 - давления в полостях цилиндра; Q - расход жидкости через дроссель; S - площадь поршня; R г - гидравлическое сопротивление дросселя.
Здесь разность внешней силы F и внутренней гидростатической силы F г определяет инерционную силу F и. Эта разность сил зависит от разности давлений жидкости ΔP = P2 – P1 в нижней и в верхней полостях цилиндра. В свою очередь, инерционная сила F и определяет ускорение поршня . Проинтегрировав ускорение , получим скорость , а проинтегрировав скорость , получим перемещение x. Скорость определяет расход жидкости Q из нижней полости в верхнюю полость, что при известном гидравлическом сопротивлении дроссельного отверстия в поршне позволяет найти разность давлений жидкости ΔP в нижней и в верхней полостях гидроцилиндра, а следовательно, и гидростатическую силу F г. Сеть связей физических величин показывает рассмотренные качественные зависимости физических величин (рис. 4.16). Рис.4.16. Качественные зависимости
Физические уравнения и соответствующие им передаточные функции определяют количественные зависимости физических величин. Рис. 4.17. Структурная схема амортизатора Структурная схема (рис.4.17) представляет собой имитационную модель гидравлического амортизатора. Движение этой модели легко описать с помощью системы линейных ДУ и решить их с помощью ЭВМ.
|