Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Операции над вероятностями





 

Теорема 1 (о сумме попарно несовместных событий). Вероятность суммы попарно несовместных событий равна сумме вероятностей этих событий, т.е. .

Пример:

В лотерее выпущено 10 000 билетов и установлено 10 выигрышей по 200 рублей, 100 выигрышей по 100 рублей, 500 выигрышей по 25 рублей и 1 000 выигрышей по 5 рублей. Какова вероятность того, что человек, купивший билет выиграет не менее 25 рублей?

Решение:

А – человек выиграл не менее 25 рублей;

выигрыш составил 200 рублей;

выигрыш составил 100 рублей;

выигрыш составил 25 рублей;

, при чем - попарно несовместные события. Значит, .

Теорема 2 (о сумме двух произвольных событий). Вероятность суммы двух любых событий равна сумме вероятностей этих событий без вероятности их совместного осуществления, т.е. .

Пример:

Бросаем две игральные кости. Вычислить вероятность выпадения хотя бы одной «шестерки».

Решение:

А – выпадение «шестерки» на первой кости;

В – выпадение «шестерки» на второй кости.

Тогда .

Часто возникает ситуация, когда вероятность появления некоторого события В зависит от того, произошло или нет ранее событие А. в таком случае говорят, что событие В зависит от события А, а вероятность появления события В называют условной вероятностью и обозначают - условная вероятность события В при условии, что событие А произошло или - условная вероятность события В при условии, что событие А не произошло.

Пример:

В урне 10 белых и 5 черных шаров. Вынимают один за другим 2 шара. Какова вероятность того, что второй шар окажется белым?

Решение: Событие А – первый шар белый; событие В – второй шар белый. Тогда , а зависит от того, какой была первая карта. Возможны два случая: и .

Теорема 3 (о произведении двух произвольных событий). Вероятность произведения двух любых событий равна произведению вероятности одного из этих событий на условную вероятность другого события при условии, что первое событие произошло, т.е. .

Пример:

Из колоды в 36 карт наугад вынимают две карты. Вычислить вероятность того, что вынуты две дамы.

Решение:

А – первая карта – дама; В – вторая карта – дама.

Тогда .

Если , т.е. если условная вероятность события В равна его безусловной вероятности, то событие В называют независимым от события А. Другими словами, два события называются независимыми, если появление любого из них не изменит вероятность появления другого. При этом, если и В независимы, то и - независимы.

Теорема 4 (о произведении независимых событий). Вероятность произведения независимых событий равна произведению вероятностей этих событий, т.е.

Пример:

В одной урне – 5 красных шаров. В другой – 2 красных и 4 белых. Из каждой урны берут по одному шару. Какова вероятность, что оба они окажутся красными?

Решение:

А – шар из первой урны – красный;

В – шар из второй урны – красный. События А и В – независимые.

Тогда .

Теорема 5 (о противоположном событии) и

Пример:

Вероятность студента сдать зачет равна 0,76. Какова вероятность того, что студент не сдаст зачет?

Решение:

Событие А – студент сдал зачет. Тогда .

 







Дата добавления: 2015-04-16; просмотров: 1326. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия