Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Операции над вероятностями





 

Теорема 1 (о сумме попарно несовместных событий). Вероятность суммы попарно несовместных событий равна сумме вероятностей этих событий, т.е. .

Пример:

В лотерее выпущено 10 000 билетов и установлено 10 выигрышей по 200 рублей, 100 выигрышей по 100 рублей, 500 выигрышей по 25 рублей и 1 000 выигрышей по 5 рублей. Какова вероятность того, что человек, купивший билет выиграет не менее 25 рублей?

Решение:

А – человек выиграл не менее 25 рублей;

выигрыш составил 200 рублей;

выигрыш составил 100 рублей;

выигрыш составил 25 рублей;

, при чем - попарно несовместные события. Значит, .

Теорема 2 (о сумме двух произвольных событий). Вероятность суммы двух любых событий равна сумме вероятностей этих событий без вероятности их совместного осуществления, т.е. .

Пример:

Бросаем две игральные кости. Вычислить вероятность выпадения хотя бы одной «шестерки».

Решение:

А – выпадение «шестерки» на первой кости;

В – выпадение «шестерки» на второй кости.

Тогда .

Часто возникает ситуация, когда вероятность появления некоторого события В зависит от того, произошло или нет ранее событие А. в таком случае говорят, что событие В зависит от события А, а вероятность появления события В называют условной вероятностью и обозначают - условная вероятность события В при условии, что событие А произошло или - условная вероятность события В при условии, что событие А не произошло.

Пример:

В урне 10 белых и 5 черных шаров. Вынимают один за другим 2 шара. Какова вероятность того, что второй шар окажется белым?

Решение: Событие А – первый шар белый; событие В – второй шар белый. Тогда , а зависит от того, какой была первая карта. Возможны два случая: и .

Теорема 3 (о произведении двух произвольных событий). Вероятность произведения двух любых событий равна произведению вероятности одного из этих событий на условную вероятность другого события при условии, что первое событие произошло, т.е. .

Пример:

Из колоды в 36 карт наугад вынимают две карты. Вычислить вероятность того, что вынуты две дамы.

Решение:

А – первая карта – дама; В – вторая карта – дама.

Тогда .

Если , т.е. если условная вероятность события В равна его безусловной вероятности, то событие В называют независимым от события А. Другими словами, два события называются независимыми, если появление любого из них не изменит вероятность появления другого. При этом, если и В независимы, то и - независимы.

Теорема 4 (о произведении независимых событий). Вероятность произведения независимых событий равна произведению вероятностей этих событий, т.е.

Пример:

В одной урне – 5 красных шаров. В другой – 2 красных и 4 белых. Из каждой урны берут по одному шару. Какова вероятность, что оба они окажутся красными?

Решение:

А – шар из первой урны – красный;

В – шар из второй урны – красный. События А и В – независимые.

Тогда .

Теорема 5 (о противоположном событии) и

Пример:

Вероятность студента сдать зачет равна 0,76. Какова вероятность того, что студент не сдаст зачет?

Решение:

Событие А – студент сдал зачет. Тогда .

 







Дата добавления: 2015-04-16; просмотров: 1326. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия