Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ





Учебный материал дисциплины «Математический анализ» состоит из следующих разделов: 1) введение в анализ: множества, функции; 2) предел и непрерывность функции; 3) дифференциальное исчисление функций одной переменной; 4) дифференци­альное исчисление функций нескольких переменных; 5) интегральное исчисление функций одной переменной; 6) числовые и степенные ря­ды; 7) обыкновенные дифференциальные уравнения.

Изучение разделов «Введение в анализ: множества, функции», «Дифференциальное исчис­ление функций одной переменной» служит углублению знаний, получен­ных в школьном курсе «Алгебра и начала анализа», как в отношении бо­лее основательной теоретической базы, так и в направлении решения бо­лее трудных задач.

При изучении раздела «Предел и непрерывность функций» студенты знакомятся с основами математического анализа как раздела высшей ма­тематики.

Раздел «Дифференциальное исчисление функций нескольких пере­менных» является для студентов новым и требует большего времени на освоение. Так как математическая формализация экономических задач требует рассмотрения, как правило, функций нескольких переменных, то для успешной работы с математическими моделями экономических про­цессов этот раздел обязателен для изучения.

В разделе «Интегральное исчисление функций одной переменной» рассматривается решение задачи, обратной к задаче нахождения произ­водной. Трудности, возникающие при освоении раздела, носят как техни­ческий характер (приемы вычисления неопределенных интегралов), так и принципиальный характер: не любой интеграл от элементарной функции может быть представлен как элементарная функция. Для хорошего освое­ния раздела требуется решение большого количества задач.

В разделе «Числовые и степенные ряды» студенты осваивают новые для них понятия. Центральным моментом при изучении числовых рядов является понятие сходимости ряда, которое позволяет определить беско­нечную сумму ряда или утверждать, что такой суммы для данною ряда не существует. В степенных рядах важнейшим обстоятельством является возможность разложения функций в степенной ряд с последующим их дифференцированием или итерированием. Это позволяет применять степенные ряды, как в приближенных вычислениях, так и при решении дифференциальных уравнений.

В разделе «Обыкновенные дифференциальные уравнения» использу­ются понятия производной и интеграла. Дифференциальные уравнения часто возникают при построении математических моделей экономических процессов.

Для успешного освоения учебного материала курса «Математический анализ» требуются систематическая работа по изучению лекций и реко­мендуемой литературы, решению домашних задач и домашних контроль­ных работ (индивидуальных заданий), а также активное участие в работе семинаров.

Показателем освоения материала служит успешное решение задач предлагаемых домашних контрольных работ (индивидуальных заданий) и выполнение аудиторных самостоятельных и контрольных работ.

В качестве оценочных средств программой дисциплины предусмат­ривается:

• текущий контроль (аудиторные контрольные работы, домашние контрольные работы, домашние задания);

• итоговый контроль (Часть I экзамен, часть II экзамен).

Итоговый контроль изучения дисциплины «Математический анализ» проводится в форме письменного экзамена в 1-ом и 2-ом семест­рах. Итоговая оценка за экзамен выставляется в форме «неудовлетвори­тельно», «удовлетворительно», «хорошо», «отлично».







Дата добавления: 2015-04-16; просмотров: 421. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия