Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ





Учебный материал дисциплины «Математический анализ» состоит из следующих разделов: 1) введение в анализ: множества, функции; 2) предел и непрерывность функции; 3) дифференциальное исчисление функций одной переменной; 4) дифференци­альное исчисление функций нескольких переменных; 5) интегральное исчисление функций одной переменной; 6) числовые и степенные ря­ды; 7) обыкновенные дифференциальные уравнения.

Изучение разделов «Введение в анализ: множества, функции», «Дифференциальное исчис­ление функций одной переменной» служит углублению знаний, получен­ных в школьном курсе «Алгебра и начала анализа», как в отношении бо­лее основательной теоретической базы, так и в направлении решения бо­лее трудных задач.

При изучении раздела «Предел и непрерывность функций» студенты знакомятся с основами математического анализа как раздела высшей ма­тематики.

Раздел «Дифференциальное исчисление функций нескольких пере­менных» является для студентов новым и требует большего времени на освоение. Так как математическая формализация экономических задач требует рассмотрения, как правило, функций нескольких переменных, то для успешной работы с математическими моделями экономических про­цессов этот раздел обязателен для изучения.

В разделе «Интегральное исчисление функций одной переменной» рассматривается решение задачи, обратной к задаче нахождения произ­водной. Трудности, возникающие при освоении раздела, носят как техни­ческий характер (приемы вычисления неопределенных интегралов), так и принципиальный характер: не любой интеграл от элементарной функции может быть представлен как элементарная функция. Для хорошего освое­ния раздела требуется решение большого количества задач.

В разделе «Числовые и степенные ряды» студенты осваивают новые для них понятия. Центральным моментом при изучении числовых рядов является понятие сходимости ряда, которое позволяет определить беско­нечную сумму ряда или утверждать, что такой суммы для данною ряда не существует. В степенных рядах важнейшим обстоятельством является возможность разложения функций в степенной ряд с последующим их дифференцированием или итерированием. Это позволяет применять степенные ряды, как в приближенных вычислениях, так и при решении дифференциальных уравнений.

В разделе «Обыкновенные дифференциальные уравнения» использу­ются понятия производной и интеграла. Дифференциальные уравнения часто возникают при построении математических моделей экономических процессов.

Для успешного освоения учебного материала курса «Математический анализ» требуются систематическая работа по изучению лекций и реко­мендуемой литературы, решению домашних задач и домашних контроль­ных работ (индивидуальных заданий), а также активное участие в работе семинаров.

Показателем освоения материала служит успешное решение задач предлагаемых домашних контрольных работ (индивидуальных заданий) и выполнение аудиторных самостоятельных и контрольных работ.

В качестве оценочных средств программой дисциплины предусмат­ривается:

• текущий контроль (аудиторные контрольные работы, домашние контрольные работы, домашние задания);

• итоговый контроль (Часть I экзамен, часть II экзамен).

Итоговый контроль изучения дисциплины «Математический анализ» проводится в форме письменного экзамена в 1-ом и 2-ом семест­рах. Итоговая оценка за экзамен выставляется в форме «неудовлетвори­тельно», «удовлетворительно», «хорошо», «отлично».







Дата добавления: 2015-04-16; просмотров: 421. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия