Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ





Учебный материал дисциплины «Математический анализ» состоит из следующих разделов: 1) введение в анализ: множества, функции; 2) предел и непрерывность функции; 3) дифференциальное исчисление функций одной переменной; 4) дифференци­альное исчисление функций нескольких переменных; 5) интегральное исчисление функций одной переменной; 6) числовые и степенные ря­ды; 7) обыкновенные дифференциальные уравнения.

Изучение разделов «Введение в анализ: множества, функции», «Дифференциальное исчис­ление функций одной переменной» служит углублению знаний, получен­ных в школьном курсе «Алгебра и начала анализа», как в отношении бо­лее основательной теоретической базы, так и в направлении решения бо­лее трудных задач.

При изучении раздела «Предел и непрерывность функций» студенты знакомятся с основами математического анализа как раздела высшей ма­тематики.

Раздел «Дифференциальное исчисление функций нескольких пере­менных» является для студентов новым и требует большего времени на освоение. Так как математическая формализация экономических задач требует рассмотрения, как правило, функций нескольких переменных, то для успешной работы с математическими моделями экономических про­цессов этот раздел обязателен для изучения.

В разделе «Интегральное исчисление функций одной переменной» рассматривается решение задачи, обратной к задаче нахождения произ­водной. Трудности, возникающие при освоении раздела, носят как техни­ческий характер (приемы вычисления неопределенных интегралов), так и принципиальный характер: не любой интеграл от элементарной функции может быть представлен как элементарная функция. Для хорошего освое­ния раздела требуется решение большого количества задач.

В разделе «Числовые и степенные ряды» студенты осваивают новые для них понятия. Центральным моментом при изучении числовых рядов является понятие сходимости ряда, которое позволяет определить беско­нечную сумму ряда или утверждать, что такой суммы для данною ряда не существует. В степенных рядах важнейшим обстоятельством является возможность разложения функций в степенной ряд с последующим их дифференцированием или итерированием. Это позволяет применять степенные ряды, как в приближенных вычислениях, так и при решении дифференциальных уравнений.

В разделе «Обыкновенные дифференциальные уравнения» использу­ются понятия производной и интеграла. Дифференциальные уравнения часто возникают при построении математических моделей экономических процессов.

Для успешного освоения учебного материала курса «Математический анализ» требуются систематическая работа по изучению лекций и реко­мендуемой литературы, решению домашних задач и домашних контроль­ных работ (индивидуальных заданий), а также активное участие в работе семинаров.

Показателем освоения материала служит успешное решение задач предлагаемых домашних контрольных работ (индивидуальных заданий) и выполнение аудиторных самостоятельных и контрольных работ.

В качестве оценочных средств программой дисциплины предусмат­ривается:

• текущий контроль (аудиторные контрольные работы, домашние контрольные работы, домашние задания);

• итоговый контроль (Часть I экзамен, часть II экзамен).

Итоговый контроль изучения дисциплины «Математический анализ» проводится в форме письменного экзамена в 1-ом и 2-ом семест­рах. Итоговая оценка за экзамен выставляется в форме «неудовлетвори­тельно», «удовлетворительно», «хорошо», «отлично».







Дата добавления: 2015-04-16; просмотров: 421. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия