Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

IX.Дифференциальные уравнения





120. Понятие дифференциального уравнения, его общее и частное решения. Интегральная кривая. Порядок дифференциального уравнения.

121. Общий вид дифференциального уравнения I порядка, его геометрический смысл. Изоклины.

122. Теорема о существовании и единственности решения задачи Коши для дифференциального уравнения I порядка. Геометрический смысл задачи Коши. Особые решения.

123. Дифференциальные уравнения с разделяющимися переменными: общий вид; нахождение решения.

124. Автономные дифференциальные уравнения. Теорема о решении автономного дифференциального уравнения, её геометрический смысл. Стационарное решение.

125. Модель естественного роста. Модель естественного роста в условиях конкурентного рынка.

126. Неоклассическая модель роста.

127. Однородные дифференциальные уравнения I порядка: общий вид; нахождение решения.

128. Линейные уравнения I порядка. Уравнение Бернулли. Метод Бернулли. Метод Лагранжа (вариации произвольной постоянной).

129. Уравнение в полных дифференциалах. Интегрирующий множитель Необходимое и достаточное условие полного дифференциала.

130. Дифференциальные уравнения высших порядков. Теорема о существовании и единственности решения задачи Коши для дифференциальных уравнений высших порядков. Общий и частный интегралы.

131. Уравнения, допускающие понижение порядка: общий вид; нахождение решения.

132. Линейные дифференциальные уравнения высших порядков. Линейный оператор n-го порядка. Свойство линейного оператора.

133. Теорема о решении линейного неоднородного уравнения.

134. Свойство линейных уравнений.

135. Линейные однородные дифференциальные уравнения. Определитель Вронского. Теорема о значении определителя Вронского в случае линейно независимых решений.

136. Фундаментальный набор решений. Теорема об общем решении линейного однородного дифференциального уравнения.

137. Линейные однородные дифференциальные уравнения с постоянными коэффициентами: общий вид; характеристическое уравнение; нахождение решения.

138. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Метод вариации произвольной постоянной.

139. Линейные неоднородные дифференциальные уравнения. Метод неопределённых коэффициентов.

140. Системы дифференциальных уравнений. Решение системы дифференциальных уравнений. Теорема о существовании и единственности решения задачи Коши для систем дифференциальных уравнений.

141. Метод сведения системы к одному дифференциальному уравнению.

142. Решение однородных линейных систем с постоянными коэффициентами.

143. Решение неоднородных линейных систем с постоянными коэффициентами.







Дата добавления: 2015-04-16; просмотров: 484. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия