Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

З а д а ч а 1. Определить тень точки А на поверхности шара (рис





Определить тень точки А на поверхности шара (рис. 40).

 

Решение данной задачи сводится к нахождению точки пересечения светового луча, проведенного через точку А, с поверхностью шара.

Поскольку в задаче не ставится вопрос о нахождении собственных и падающих теней шара, то достаточно определить только точки пересечения светового луча с поверхностью шара.

Задачи такого рода решаются по известному алгоритму:

1. луч заключается в какую-либо плоскость (или поверхность);

2. строится линия пересечения данной поверхности с проведенной плоскостью (или поверхностью) – фигура сечения;

3. определяются искомые точки пересечения луча с построенной фигурой сечения.

Поскольку луч занимает в пространстве общее положение, авторы учебников по начертательной геометрии обычно рекомендуют применять
в этом случае преобразование чертежа (например, метод замены плоскостей проекций), для того чтобы луч или прямая линия заняли в пространстве частное положение, поскольку только в этом случае можно получить точное решение задачи.

 

 

Рис. 40. Решение задачи 1

 

Заметим, что преобразованные чертежи имеют большие достоинства: они легко читаются, их применение позволяет избежать построения лекальных кривых по множеству точек и получить точное решение задачи. Но, к сожалению, преобразованные чертежи занимают большую площадь на поле листа бумаги и потому являются довольно громоздкими.

Известно, что любую задачу по начертательной геометрии можно решить, не прибегая к преобразованию чертежа. Покажем, как в данной задаче обойтись без последнего и в то же время получить точное решение.

Воспользуемся приведенным выше алгоритмом нахождения точки пересечения прямой линии с поверхностью:

1.заключим световой луч, проходящий через точку А, в коническую поверхность вращения, соосную со сферой. За вершину этой поверхности примем точку T (t, t '), лежащую в плоскости главного меридиана сферы. Ось конической поверхности определится парой точек O (o, o ') и T (t, t ').

Для построения главного меридиана конической поверхности, параллельного плоскости V, применим способ прямоугольного треугольника

(рис. 40), который реализован на графическом условии данной задачи,
а необходимые пояснения к нему приведены на этом же рисунке справа.

После построения очертания конической поверхности перейдем
к выполнению второго пункта алгоритма:

2. найдем линию пересечения данной сферы с проведенной вспомогательной поверхностью;

Обе поверхности сосны по построению, поэтому согласно лемме
о пересечении соосных поверхностей они пересекутся по окружностям столько раз, сколько раз пересекутся их главные полумеридианы. В данном случае пересечение произошло по двум окружностям, которые на фронтальной проекции отобразились отрезками прямых линий (на
рис. 40 показана только одна из них, которая задействована в задаче).

3. Определяем искомые точки пересечения светового луча, принадлежащего конической поверхности, с построенными фигурами сечения (окружностями).

На эпюре зафиксирована только одна точка аТ' поскольку она является действительной тенью точки А на фронтальной проекции. Горизонтальную проекцию аТ определим с помощью линии связи на горизонтальной проекции луча, пользуясь свойством принадлежности.

 







Дата добавления: 2015-04-16; просмотров: 412. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия