Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка гипотез об однородности выборок





Ответ:

Гипотезы о дисперсиях возникают довольно часто, так как дисперсия характеризует такие исключительно важные показатели, как точность машин, приборов, технологических процессов, степень однородности совокупностей, риск, связанный с отклонением доходности активов от ожидаемого уровня, и т.д.

Сформулируем задачу. Пусть имеются две нормально распределенные совокупности, дисперсии которых равны и . Необходимо проверить нулевую гипотезу о равенстве дисперсий, т.е.

Н0: = .

Для проверки гипотезы Н0 из этих совокупностей взяты две независимые выборки объемом n1 и n2. Для оценки дисперсий используются «исправленные» выборочные дисперсии.

В качестве критерия проверки рассчитаем F-статистику по формуле:

Она имеет распределение Фишера-Снедекора с (соответствует выборке для большей дисперсии) и (для меньшей дисперсии) степенями свободы при данном уровне значимости.

Критическая точка определяется в зависимости от конкурирующей гипотезы Н1 и уровня значимости .

1) Н1: > .

Критическая область правосторонняя.

Критическую точку находят по таблице для распределения Фишера-Снедекора.

Если нет оснований отвергать нулевую гипотезу.

Если - нулевую гипотезу отвергают.

 

2) Н1: .

Критическая область двусторонняя.

Критическую точку находят по таблице для распределения Фишера-Снедекора.

Если нет оснований отвергать нулевую гипотезу.

Если - нулевую гипотезу отвергают.

 







Дата добавления: 2015-04-19; просмотров: 489. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия