Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие об оценке параметров. Характеристики оценок





Ответ:

Сформулируем задачу оценки параметров в общем виде.

Пусть распределение признака Х - генеральной совокупности - задается функцией вероятности

f (x, θ) = P (X = xi) для дискретной случайной величины или плотностью вероятностей для непрерывной случайной величины, которая содержит неизвестный параметр θ.

Для вычисления параметра θ используют выборку x 1, x 2,..., xn, каждая из которых имеет один и тот же закон распределения, что и признак Х.

Оценкой θ n параметра θ называют всякую функцию результатов наблюдений (иначе - статистику), с помощью которой делают вывод о значении параметра θ:

θ n = θ n (x 1, x 2,..., xn).

Так как x 1, x 2,..., xn - случайные величины, то и оценка θ n является случайной величиной, которая зависит от закона распределения и объема выборки n. Оцениваемый параметр θ является постоянной величиной.

Так как θ n - случайная величина, то невозможно предсказать индивидуальное значение оценки в данном частном случае. Поэтому о качестве оценки следует судить не по ее индивидуальным значениям, а по распределению ее значений при достаточно большом числе испытаний, т. е. по выборочному распределению оценки.

Оценка θ n параметра θ называется несмещенной, если ее математическое ожидание равно оцениваемому параметру, т. е.

Mn) = θ.

В противном случае оценка называется смещенной. Если это равенство не выполняется, то оценка θ n, полученная по разным выборкам, будет либо завышать θ, если Mn) > θ, либо занижать его, если Mn) < θ. Таким образом, требование несмещенности гарантирует отсутствие систематических ошибок при оценивании.

Оценка θ n параметра θ называется состоятельной, если она удовлетворяет закону больших чисел, т. е. сходится по вероятности к оцениваемому параметру

Если оценка состоятельна, то практически достоверно, что при достаточно большом n θ n ≈ θ.

Несмещенная оценка θ n параметра θ является эффективной, если она имеет наименьшую дисперсию среди всех возможных несмещенных оценок параметра θ, вычисленных по выборкам одного и того же объема n. Так как для несмещенной оценки Mn – θ)2 есть дисперсия , то эффективность является решающим свойством, определяющим качество оценки.

Для матожидания несмещенной оценкой, полученной по выборке, является среднее арифметическое .

Для дисперсии σ 2 оценкой, полученной по выборке, является S 2. Для устранения смещения в оценке дисперсии достаточно оценку S 2 домножить на , тогда несмещенной оценкой генеральной дисперсии будет выборочная дисперсия:

Коэффициент особенно важен для выборок малого объема.

Для случайной величины Х, распределенной по нормальному закону, среднее арифметическое является несмещенной, состоятельной и эффективной оценкой для математического ожидания.

Однако на практике не всегда оценки удовлетворяют всем трем требованиям. Может оказаться, что даже если эффективная оценка существует, то формулы для ее вычисления оказываются слишком сложными, и тогда используют оценку, дисперсия которой несколько больше. Иногда, в интересах простоты расчетов, применяются незначительно смещенные оценки. Выбору оценки всегда должно предшествовать ее критическое рассмотрение.

 

4. Методы нахождения оценок: метод моментов, метод максимального правдоподобия, метод наименьших квадратов.

Ответ:

Выборочная характеристика, используемая в качестве приближенного значения неизвестной генеральной характеристики, называется ее точечной статистической оценкой.

"Точечная" означает, что оценка представляет собой число или точку на числовой оси.

Точечные оценки могут быть получены с использованием метода моментов, метода максимального правдоподобия и метода наименьших квадратов.

Метод моментов, предложенный Пирсоном, состоит в том, что выборочные моменты приравниваются к теоретическим моментам распределения.

Оценки метода моментов обычно состоятельны, однако по эффективности они не являются «наилучшими», их эффективности часто значительно меньше единицы. Тем не менее, метод моментов часто используется на практике, так как приводит к сравнительно простым вычислениям.







Дата добавления: 2015-04-19; просмотров: 1419. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия