Проверка гипотез о зависимости переменных
Ответ: Проверить значимость уравнения регрессии — значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольким для описания зависимой переменной. Чтобы проверить, значимы ли параметры, т.е. значимо ли они отличаются от нуля для генеральной совокупности используют статистические методы проверки гипотез. В качестве основной (нулевой) гипотезы выдвигают гипотезу о незначимом отличии от нуля параметра или статистической характеристики в генеральной совокупности. Наряду с основной (проверяемой) гипотезой выдвигают альтернативную (конкурирующую) гипотезу о неравенстве нулю параметра или статистической характеристики в генеральной совокупности. В случае если основная гипотеза окажется неверной, мы принимаем альтернативную. Для проверки этой гипотезы используется t -критерий Стьюдента. Найденное по данным наблюдений значение t -критерия (его еще называют наблюдаемым или фактическим) сравнивается с табличным (критическим) значением, определяемым по таблицам распределения Стьюдента (которые обычно приводятся в конце учебников и практикумов по статистике или эконометрике). Табличное значение определяется в зависимости от уровня значимости (a) и числа степеней свободы, которое в случае линейной парной регрессии равно (n -2), n -число наблюдений. Если фактическое значение t -критерия больше табличного (по модулю), то основную гипотезу отвергают и считают, что с вероятностью (1-a) параметр или статистическая характеристика в генеральной совокупности значимо отличается от нуля. Если фактическое значение t -критерия меньше табличного (по модулю), то нет оснований отвергать основную гипотезу, т.е. параметр или статистическая характеристика в генеральной совокупности незначимо отличается от нуля при уровне значимости a. Для параметра b критерий проверки имеет вид: , где - оценка коэффициента регрессии, полученная по наблюдаемым данным; – стандартная ошибка коэффициента регрессии. Для линейного парного уравнения регрессии стандартная ошибка коэффициента вычисляется по формуле: . Для параметра a критерий проверки гипотезы о незначимом отличии его от нуля имеет вид: , где - оценка параметра регрессии, полученная по наблюдаемым данным; – стандартная ошибка параметра a. Для линейного парного уравнения регрессии: . Для проверки гипотезы о незначимом отличии от нуля коэффициента линейной парной корреляции в генеральной совокупности используют следующий критерий: , где ryx - оценка коэффициента корреляции, полученная по наблюдаемым данным; m r – стандартная ошибка коэффициента корреляции ryx. Для линейного парного уравнения регрессии: . В парной линейной регрессии между наблюдаемыми значениями критериев существует взаимосвязь: t(b=0)=t(r=0 ).
|