Несинусоидальные токи. Разложение в ряд Фурье. Частотный спектр несинусоидальной функции напряжения или тока
Обычно анализ цепей переменного тока проводится в предположении, что действующие в них ЭДС и токи имеют синусоидальную форму. В большинстве случаев такое предположение оправдано, однако, на самом деле форма токов и напряжений в той или иной степени всегда несинусоидальна. Искажение ЭДС и токов может возникать вследствие конструктивных особенностей генераторов переменного тока, приводящих к тому, что создаваемая ими ЭДС несинусоидальна, либо вследствие нелинейности элементов электрической цепи. Причем для появления искажений достаточно наличия в цепи только одного нелинейного элемента. Чаще всего обе эти причины присутствуют одновременно, но в зависимости от степени выраженности их воздействия на цепь пренебрегают одной из них или обеими сразу. Из курса математики известно, что любую несинусоидальную периодическую функцию F (w t) удовлетворяющую условиям Дирихле, т.е. имеющую за полный период конечное число максимумов, минимумов и разрывов первого рода, можно представить в виде ряда Фурье F (w t) = A 0 + A 1sin(w t +y 1) + A 2sin(2w t +y 2) +¼ + Ak sin(k w t +y k)+¼ = A 0 + B 1sinw t + B 2sin2w t +¼ + Bk sin k w t +¼ ј + C 1cosw t + C 2cos2w t +¼ + Ck cos k w t +¼ = A 0+ a 1+ a 2+¼ + ak +¼, где . Первый член ряда A 0 называется постоянной составляющей или нулевой гармоникой. Второй член A 1sin(w t +y 1) имеет частоту равную частоте функции F (w t) и называется первой или основной гармонической составляющей (коротко - гармоникой). Остальные члены ряда вида Ak sin(k w t +y k) имеют частоты в целое число раз k больше частоты основной гармоники и называются высшими гармоническим составляющими или гармониками. Каждая высшая гармоника в отдельности именуется по номеру k, т.е. вторая гармоника, третья гармоника и т.д. Из выражения (1) следует, что каждую гармонику ряда Фурье можно представить в виде двух составляющих - синусной Bk sin k w t и косинусной Ck cos k w t. Амплитуды этих составляющих Bk и Ck называются коэффициентами ряда Фурье. Разложение в ряд Фурье всегда однозначно в отношении постоянной составляющей, а также амплитуд и частот гармонических составляющих. В то же время, начальные фазы гармоник изменяются при изменении момента времени, принятого за начало отсчета. Таким образом, ряд Фурье можно определить, задав номера, амплитуды и начальные фазы гармоник или номера и амплитуды синусной и косинусной составляющих гармоник. Совокупность амплитуд Ak и начальных фаз y k называются соответственно амплитудным и фазовым частотными спектрами, а совокупность коэффициентов Bk и Ck - частотным спектром функции. Спектры функций удобно изображать отрезками прямых линий, пропорциональных соответствующим величинам (рис). На показаны два варианта частотных спектров ряда Фурье u (t)=10+20sin(500 t- p/6)+5sin(1500 t +p /4)+7sin(2500 t +2p /3). Пусть w t = a. Тогда разложение в ряд функции F (a), имеющей период 2p, будет F (a) = A 0 + B 1sina + B 2sin2a +¼ + Bk sin ka +¼ ј + C 1cosa + C 2cos2a +¼ + Ck cos ka +¼ = = A 0 + A 1sin(a +y1) + A 2sin(2a +y2) +¼ + Ak sin(ka +y k)+¼. Для этой функции коэффициенты ряда Фурье можно найти из выражений
|