Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общая характеристика цифровых фильтров





Линейную дискретную систему с постоянными параметрами, описываемую разностным уравнением

(2.1)

обычно принято называть цифровым фильтром.

В данном выражении, как известно, x(n) – отсчеты входного сигнала; y(n) – выходного, а ak и bk являются постоянными величинами, которые чаще называют коэффциентами фильтра.

В настоящее время разработаны эффектвнные методы выбора коэффициентов ak и bk, обеспечивающие получение заданных характеристик проектируемых фильтров.

Фильтр, описываемый данным уравнением, можно реализовать программным или аппаратным способом, используя цифровые устройства, выполняющие три операции: задержку, умножение и сложение на основе регистров сдвига, умножителей и регистров сдвига.

Найдем z-преобразование выражения, описывающего цифровой фильтр в самом общем случае:

 

 

Левую часть данного выражения, являющейся z-преобразованием выходной последовательности y(n), обозначим через Y(z). Правую часть можно вычислить с помощью свойства сдвига z-преобразования. В результате получим:

Отсюда легко найти передаточную функцию

(2.2)

 

Как видно из полученного выражения, H(z) является рациональной функцией от z-1.

Цифровые фильтры принято делить на рекурсивные и нерекурсивные. Если хотя бы один из коэффициентов bk в выражении (2.1) или (2.2) не равен нулю, то для вычисления y(n) требуются ранее вычисленные выходные выборки. Такой фильтр называется рекурсивным. Если же все коэффициенты bk равны нулю, то для вычисления y(n) не требуются ранее вычисленные выходные выборки и фильтр, реализующий такой алгоритм, называется нерекурсивным. Из (2.1) следует алгоритм работы такого фильтра:

 

(2.3)

 

Соответствующая передаточная функция определяется выражением:

(2.4)

Очевидно, что не рекурсивные фильтры представляют собой устройства без обратной связи

Из выражений (2.3) и (2.4) следует, что для не рекурсивных цифровых фильтров выборки импульсной характеристики совпадают со значениями соответствующих коэффициентов, т. е.,

(2.5)

 

По этой причине нерекурсивные фильтры являются фильтрами с конечной импульсной характеристикой (КИХ – фильтры), а рекурсивные – фильтрами с бесконечной импульсной характеристикой (БИХ – фильтры). Нерекурсивные фильтры иногда называют трансверсальными.

Легко видеть, что КИХ – фильтры имеют только конечное число нулей, тогда как БИХ – фильтры имеют как нули, так и полюсы. Именно это обстоятельство(отсутствие полюсов) делает нерекурсивные фильтры всегда устойчивыми и физически реализуемыми. Цифровые рекурсивные фильтры, как уже отмечалось, устойчивы, если все полюсы передаточной функции H(z) расположены внутри единичного круга в z-плоскости.

 







Дата добавления: 2015-04-19; просмотров: 886. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия