Проектирование цифровых фильтров
Проектирование цифровых фильтров сводиться к задаче определения передаточной функции, которая представляет собой рациональную функцию от z-1 случае рекурсивных или полином от z-1 в случае нерекурсивных систем. Передаточная функция соответствующего фильтра должна удовлетворять предъявляемым техническим требованиям. На практике характеристики цифровых фильтров, как правило, задаются в частотной области, так как такие системы используются в большинстве случаев для выполнения операции фильтрации цифровых сигналов, полученных из аналоговых путем дискретизации и квантования. На рис.3.16 приведены амплитудно-частотные характеристики идеальных частотно-избирательных фильтров нижних и верхних частот, полосовых и режекторных (заграждающих), которые наиболее широко применяются при обработке сигналов. Однако на практике частотные характеристики идеальных фильтров невозможно реализовать абсолютно точно по двум причинам. Первая состоит в том, что получить идеальную форму амплитудно-частотной характеристики фильтра можно только в пределе при стремящемся к бесконечности числу членов передаточной функции. Поэтому фактически используется лишь аппроксимация характеристик идеальных фильтров. Вторая состоит в том, что из-за ограниченного числа данных истинная передаточная функция есть в действительности свертка теоретической передаточной функции с функцией вида (sin x)/x. Однако, несмотря на это реализованные на практике цифровые фильтры столь же хороши для решения многих задач науки и техники, как и идеальные фильтры. В общем случае порядок расчета цифровых фильтров, реализуемых программным способом на ЭВМ или аппаратным способом в виде специализированных устройств, сводится к следующим этапам: 1. Определение требуемых свойств фильтра. 2. Вычисление коэффициентов передаточной функции фильтра, при которых фильтр удовлетворяет заданным требованиям. 3. Выбор подходящей структуры фильтра. 4. Анализ влияния конечной разрядности на параметры фильтра.
|Н(ejθ)|
0 θc θ а)
|Н(ejθ)|
0 θc θ б)
|Н(ejθ)|
0 θ1 θ0 θ2 θ
в)
|Н(ejθ)|
0 θ1 θ0 θ2 θ
Рисунок 3.16. Амплитудно-частотные характеристики идеальных фильтров. А – нижних частот, б – верхних частот, в – полосовых, г – режекторных. Штриховкой указаны частоты, которые пропускаются фильтром.
5. Рализация фильтра на програмном и (или) аппаратном уровне. Указанные этапы не всегда независимы и часто они не располагаются в данном порядке. Чтобы получить эффективный фильтр, инога приходится данный процесс проводить в несколько итераций, особенно если требования не являются совершенно поределенными (как обычно и бывает), или же разработчик намерен исследовать альтернативные структуры.
|