Метод билинейного Z-преобразования
Для исключения эффекта наложения, присущего методу инвариантного преобразования импульсной характеристики, необходимо определить однозначное непрерывное отображение из s-плоскости в z-плоскость. Одним из таких преобразований является билинейное z-преобразование, при котором для преобразования характеристики аналогового фильтра H(s) в характеристику эквивалентного цифрового фильтра применяется следующая схема: где
С помощью несложных преобразований можно найти обратное соотношение:
или
Для билинейного z-преобразования выполняются оба условия перехода. В этом случае мнимая ось Im [s] s-плоскости полностью отображается в единичную окружность на z-плоскости, а левая полуплоскость s-плоскости отображается на z-плоскости внутрь единичного круга. Другими словами, физически реализуемый устойчивый аналоговый фильтр преобразуется с помощью билинейного преобразования в физически реализуемый устойчивый цифровой фильтр.
Можно также показать, что билинейное преобразование – однозначная функция. Это означает, что каждой точке в z-плоскости соответствует только одна точка в s-плоскости и наоборот. Из этого свойства следует, что при билинейной процедуре преобразования отсутствует эффект наложения. Методики расчета ЦФ на основе метода билинейного преобразования сводится к нахождению подходящей передаточной функции Н(s) аналогового фильтра и применения к ней соответствующей замены комплексной переменной для получения передаточной функции Н(z) требуемого цифрового фильтра
При этом преобразовании, как уже отмечалось, будут сохраняться частотная характеристика и свойства устойчивости аналогового фильтра. Тем не менее, следует отметить, что это не означает того, что частотные характеристики аналогового и цифрового фильтра будут полностью идентичными. Одинаковой на самом деле оказывается только их «форма». Это объясняется тем, что цифровая частота θ=
Действительно, подставляя в выражение
получим
Отсюда легко получить предыдущее выражение.
Рис. Связь между аналоговой и цифровой частотой, иллюстрирующая эффект деформации Связь аналоговой частоты где
T - интервал дискретизации
Несмотря на это метод билинейного преобразования дает лучшие результаты перехода от аналоговых фильтров к цифровым по сравнению с методом численного интегрирования и методом инвариантности импульсной характеристики, и является, пожалуй, самым важным методом получения коэффициентов БИХ - фильтров. Для стандартных частотно-избирательных БИХ – фильтров можно следующим образом обобщить порядок применения билинейного преобразования. 1. На основе требований к цифровому фильтру определить нормированный аналоговый фильтр-прототип с передаточной функцией H(s). 2. Определить и деформировать граничные или критичные частоты нужного фильтра. Для нижних или верхних частот существует единственная граничная частота (частота среза)
3. Денормировать аналоговый фильтр-прототип, заменив s в передаточной функции H(s) с помощью одного из следующих преобразований (в зависимости от требуемого фильтра): 4. Применить билинейное z-преобразование и получить передаточную функцию нужного цифрового фильтра H(z), заменив s в денормированной передаточной функции H`(s):
Следует отметить, что деформирование частотной шкалы и билинейное z-преобразование для повышения вычислительной эффективности можно объединить в одно преобразование:
Далее, для ФНЧ и ФВЧ порядок H(z) равен порядку передаточной функции H(s) аналогового фильтра. Например, если функция H(z) получена из функции H(s) аналогового фильтра второго порядка, то и H(z) также будет описывать систему второго порядка. Для полосовых и режекторных(заградительных) фильтров порядок H(z) будет вдвое больше порядка H(s). Пример. Фильтр нижних частот. Требуется разработать цифровой фильтр нижних частот, аппроксимирующий следующую передаточную функцию H(s) аналогового фильтра
Используя метод билинейного z-преобразования, получим передаточную функцию H(z) цифрового фильтра, если частота среза по уровню 3 дБ равна 150 Гц, а частота дискретизации равна 1,28кГц. Решение. Предварительно деформируем частоту среза аналогового фильтра где
Промасштабированный аналоговый фильтр характеризуется передаточной функцией
После применения билинейного z-преобразования получим:
Отсюда легко найти собственные разностные уравнения и структурную схему полученного цифрового фильтра. 29. Общая характеристика аналоговых фильтров-прототипов: Баттерворта, Чебышева I и II типа, Золоторева-Каура (эллиптические). Методика применения билинейного Z-преобразования. Общая характеристика аналоговых фильтров-прототипов Фильтры Баттерворта, Чебышева, инверсные Чебышева и эллиптические образуют четыре наиболее известных класса. Фильтр Баттерворта обладает монотонной характеристикой (Характеристика является монотонно спадающей, если она никогда не возрастает с увеличением частоты.) Характеристика фильтра Чебышева содержит пульсации (колебания передачи) в полосе пропускания и монотонна в полосе задерживания. Инверсная характеристика фильтра Чебышева монотонна в полосе пропускания и обладает пульсациями в полосе задерживания.
1.1. Фильтры Баттерворта Вероятно, наиболее простая амплитудно-частотная характеристика фильтра нижних частот у фильтра Баттерворта, которая в случае n -го порядка определяется следующим образом:
Эта характеристика фильтра Баттерворта монотонно спадает (никогда не возрастает) при увеличении частоты. Увеличение порядка также приводит к улучшению характеристики. Для фильтра Баттерворта минимальный порядок можно определить, подставив приведенные выше условия в (1) и решив его относительно порядка n. В результате получаем
Амплитудно-частотная характеристика фильтра Баттерворта наиболее плоская около частоты w =0 по сравнению с характеристикой любого полиномиального фильтра n -го порядка и вследствие этого называется максимально плоской. Следовательно, для диапазона низких частот характеристика фильтра Баттерворта наилучшим образом аппроксимирует идеальную характеристику. Однако для частот, расположенных около точки среза и в полосе задерживания, характеристика фильтра Баттерворта заметно уступает характеристике Чебышева, который рассматривается ниже. Однако фазочастотная характеристика фильтра Баттерворта лучше (более близка к линейной), чем соответствующие фазочастотные характеристики фильтров Чебышева, инверсных Чебышева и эллиптических сравнимого порядка. Это согласуется с общим правилом для фильтров данного типа – чем лучше амплитудно-частотная характеристика, тем хуже фазочастотная, и наоборот.
1.2. Фильтры Чебышева
Фильтр Чебышева обладает амплитудно-частотной характеристикой, которая определяется следующим образом:
Параметры e и К – постоянные числа, а Сn является полиномом Чебышева первого рода степени n и имеет вид:
Амплитудно-частотная характеристика достигает своего наибольшего значения К в тех точках, где Сn равно нулю. Поскольку эти точки распределены по полосе пропускания, то характеристика фильтра Чебышева содержит пульсации в полосе пропускания и монотонна в других областях. Размах этих пульсаций определяет параметр e, а их число степень n. Коэффициент усиления фильтра определяется значением К. Минимально допустимое затухание в полосе пропускания – постоянный размах пульсаций, часто выражается в децибелах как
и может использоваться как характеристика фильтра Чебышева. На основе (8) для К =1 найдем минимальный порядок фильтра Чебышева:
Амплитудно-частотная характеристика фильтра Чебышева данного порядка лучше амплитудно-частотной характеристики Баттерворта, так как у фильтра Чебышева уже ширина переходной области. Однако фазочастотная характеристика фильтра Чебышева хуже (более нелинейна) по сравнению с фазочастотной характеристикой фильтра Баттерворта. Фазочастотные характеристики фильтра Чебышева для 2–7-го порядков приведены на рис. 5. Для сравнения на рис. 5 штриховой линией изображена фазочастотная характеристика фильтра Баттерворта шестого порядка. Можно также отметить, что фазочастотные характеристики фильтров Чебышева высокого порядка хуже фазочастотных характеристик фильтров более низкого порядка. Это согласуется с тем фактом, что амплитудно-частотная характеристика фильтра Чебышева высокого порядка лучше амплитудно-частотной характеристики фильтра более низкого порядка.
Рис. 5. Фазочастотные характеристики фильтров Баттерворта и Чебышева.
1.3. Эллиптические фильтры Эллиптический фильтр имеет амплитудно-частотную характеристику, которая содержит пульсации как в полосе пропускания, так и в полосе задерживания и является лучшим среди всех фильтров нижних частот в том смысле, что для заданного порядка и допустимых отклонений характеристик в полосах пропускания и задерживания обладает самой узкой шириной переходной области. Пример амплитудно-частотной характеристики эллиптического фильтра пятого порядка изображен на рис. 6.
Рис. 6. Амплитудно-частотная характеристика эллиптического фильтра нижних частот для случая n =5. Пульсации в полосе пропускания равны по значению и могут характеризоваться максимальным допустимым затуханием в полосе задерживания. Эта величина которую мы также будем называть неравномерностью передачи, в полосе пропускания (РRW), дБ, согласно обозначению на рис. 6 равна:
Пульсации в полосе пропускания так же равны по значению (хотя не обязательно равны размаху пульсаций в полосе пропускания) и характеризуются минимальным затуханием в полосе задерживания МSL, дБ, следующим образом:
30. Эффекты конечной разрядности чисел в БИХ-фильтрах. Ошибки квантования коэффициентов, ошибки переполнения и округления. Предельные циклы. Влияние конечной разрядности в БИХ - фильтрах. Получаемые при расчете коэффициенты сек и вк имеют бесконечную или очень высокую точность, обычно 6-7 десятичных разрядов. Если же цифровой фильтр реализуется, например, 8-битовым микрокомпьютером, то при представлении коэффициентов и выполнении арифметических операций, указанных в разностном уравнении появляются ошибки. Эти ошибки отрицательно сказываются на быстродействии фильтра и даже могут привести к его неустойчивости. Основными искажающими факторами цифровых БИХ – фильтров являются: - Шумы квантования АЦП - Ошибки (погрешности) квантования коэффициентов, вызванные представлением коэффициентов БИХ – фильтров конечным числом битов (разрядов). - Ошибки переполнения, которые возникают при сложении или промежуточном суммировании частичных результатов в регистрах ограниченной длины. - Ошибки округления результатов, когда выходная последовательность y(n) и результаты внутренних арифметических операций округляется (или усекаются) до разрешенной длины слов. Степень ухудшения характеристик фильтров зависит, во-первых, от длины слова и типа арифметики, используемой для выполнения операции фильтрации, во-вторых, метода, используемого для квантования коэффициентов и переменных фильтра, и, в-третьих, структуры фильтра. В зависимости от реализации фильтра, некоторые эффекты могут быть незначительными. Например, если фильтр реализуется как программа на языке высокого уровня (например, на больших компьютерах), то ошибки квантования коэффициентов и округления будут несущественными. При обработке в реальном времени входные и выходные сигналы, коэффициенты фильтра и результаты арифметических операций представляются с использованием слов конечной длины (обычно 8, 12 и 16 бит). В таких случаях практически всегда необходимо проанализировать влияние квантования на быстродействие фильтра. Влияние конечной разрядности более сложно проанализировать для БИХ чем для КИХ – фильтров из-за наличия обратной связи. Ошибки квантования коэффициентов. Как известно, передаточная функция БИХ – фильтров характеризуется следующим выражением:
Если коэффициенты квантуются до конечного числа битов, например, 8 или 16, квантованную передаточную функцию можно записать следующим образом: где
q- «квантованный коэффициент». Основное влияние квантования коэффициента фильтра с использование конечного числа битов проявляется в изменении полюсов и нулей передаточной функции на комплексной плоскости, что может привести к следующим последствиям: - неустойчивость или потенциальная неустойчивость фильтров высокого порядка с узкой переходной полосой и полюсами, близкими к единичной окружности; - изменение желаемой частотной характеристики. 31. КИХ-фильтры с линейной фазовой характеристикой и их свойства. Существует четыре типа КИХ-фильтров с линейной фазовой характеристикой, отличающихся четностью N и типом симметрии h (n) (положительная или отрицательная). Импульсные характеристики фильтров с линейной фазовой характеристикой.
Частотная характеристика фильтра типа 2 всегда равно нулю при f = 0,5 (половина частоты дискретизации, поскольку все частоты нормированы на частоту дискретизации). По этой причине фильтры данного типа не используются в качестве фильтров верхних частот. Фильтры тип 3 и 4 (отрицательно-симметричная импульсная характеристика) вносят сдвиг фазы на p/2, а их частотная характеристика всегда равна нулю при f = 0, так что такие фильтры нельзя использовать как фильтры низких частот. Кроме того, характеристика фильтров третьего типа всегда равна нулю при f = 0,5, так что их также не стоит применять как фильтр верхних частот. Фильтры первого типа наиболее универсальны. Фильтры третьего и четвертого типа часто используются при разработке дифференциаторов и фильтров, реализующих преобразование Гильберта, поскольку такие фильтры могут давать сдвиг фазы на 90°. Следует отметить, что фазовую задержку (фильтры типа 1 и 2) или групповую задержку (фильтры всех четырех типов) можно выразить через число коэффициентов импульсной характеристики, которые можно подобрать так, чтобы фильтр давал нулевую фазовую или групповую задержку. Например, для фильтров типа 1 и 2 фазовая задержка записывается таким образом
а групповая задержка для фильтров типа 3 и 4 равна
где T – интервал дискретизации. Разработка КИХ-фильтров также включает пять этапов, содержание которых было рассмотрено при изучении БИХ-фильтров. Здесь рассмотрим некоторые особенности требований, предъявляемых к КИХ-фильтрам. При рассмотрении фазовой характеристики достаточно указать, какая нужна симметрия – четная или нечетная (предполагается, что фазовая характеристика линейная). Амплитудно-частотная характеристика, как правило, также задается в виде допусков: неравномерность в полосе пропускания, ослабление в полосе затухания, граничные частоты полосы пропускания и полосы затухания, частота дискретизации. Другой важный параметр – это длина импульсной характеристики N, которая определяет число коэффициентов фильтра (иногда на величину N вводится ограничение, например, в случае, если возможная скорость обработки фиксирована). 32. Расчет цифровых КИХ-фильтров: методы взвешивания и частотной выборки.
Процедура расчета КИХ-фильтров методом взвешивания следующая: 1. Задается требуемая или идеальная частотная характеристика фильтра 2. Находится импульсная характеристика 3. Выбирается весовая функция, которая удовлетворяет заданным требованиям к полосе пропускания или затухания, а затем определяется число коэффициентов фильтра, используя выражение для связи длины импульсной характеристики фильтра с шириной переходной полосы пропускания (записываются через частоту дискретизации). 4. Получают значение выбранной весовой функции w (n) и значения коэффициентов импульсной характеристики h (n) реального КИХ-фильтра, умножив hu (n) w (n):
В настоящее время, как уже было отмечено, известно много взвешивающих функций (оконных функций), которые успешно применяются при разработке цифровых КИХ-фильтров. Как показывает опыт, в общем случае желательно, чтобы окно обладало следующими свойствами: 1) Ширина главного лепестка частотной характеристики окна, содержащего по возможности большую часть энергии, должна быть малой. 2) Энергия в боковых лепестках частотной характеристики окна должны быстро уменьшаться при приближении q к p. Наибольшее распространение среди всех известных взвешивающих (вырезающих) функций, которые часто называют просто окнами, получили прямоугольное (окно Дирихле), обобщенное окно Хемминга, окно Блэкмана и окно Кайзера. Преимущества и недостатки метода взвешивания. 1. Важным достоинством метода взвешивания является простота: его просто применять и легко понять. Метод требует минимального объема вычислений даже при использовании более сложных функций взвешивания, например, Кайзера. 2. Главный недостаток метода – отсутствие гибкости. Максимальная неравномерность в полосе пропускания и неравномерность в полосе подавления примерно равны, так что при разработке можно получить фильтр с либо слишком маленькой неравномерностью в полосе пропускания, либо с чрезмерно большим затуханием в полосе задерживания. 3. Вследствие того, что в методе присутствует свертка взвешивающей функции и желаемой характеристики, невозможно точно задать граничные частоты полосы пропускания и полосы подавления.4. Для выбранной взвешивающей функции (кроме функции Кайзера) максимальная амплитуда колебаний в характеристике фильтра фиксирована независимо от того, насколько велико N. Следовательно, затухание в полосе подавления фиксировано для каждой конкретной взвешивающей функции. 5. В некоторых приложениях выражения формулы для Очевидно, что метод взвешивания включает минимум вычислений. В действительности при таком подходе коэффициенты можно вычислить с помощью карманного калькулятора, хотя существуют и компьютерные программы вычисления Метод частотной выборки. Данный метод позволяет разрабатывать нерекурсивные КИХ-фильтры, в число которых входят как обычные частотно-избирательные фильтры (нижних и верхних частот, полосовые и режекторные), так и фильтры с произвольной частотной характеристикой. Уникальное достоинство метода частотной выборки состоит в том, что он допускает рекурсивные реализации КИХ-фильтров, что приводит к увеличению их вычислительной эффективности. При определенных условиях можно разработать рекурсивные КИХ-фильтры, коэффициенты которых – целые числа, что удобно для систем, реализованных на стандартных микропроцессорах.
Последовательность применения метода частотной выборки следующая: 1. Задается идеальная или желаемая частотная характеристика, затухание в полосе задерживания (подавления) и границы полос фильтра. 2. Исходя из заданных требований выбирается фильтр частотной выборки первого (выборки берутся с интервалом kfs / N) или второго типа (выборки берутся с интервалом 3. На основании требований к АЧХ фильтра и данных соответствующих таблиц определяется значение N – число частотных выборок идеальной характеристики, М – число выборок в переходной полосе, ширина перехода, число частотных выборок в полосе пропускания и Ti – значения выборок в полосе перехода (i = 1, 2, …, М). 4. Используется подходящее уравнение для расчета коэффициентов фильтра. Одним из существенных недостатков метода частотной выборки является то, что он не позволяет строго контролировать положение граничных частот или неравномерность в полосе пропускания и зависит от наличия таблиц разработки для нахождения необходимых числовых параметров. 33. Эффекты конечной разрядности чисел в КИХ-фильтрах.
Основные источники, как и для БИХ-фильтров следующие: шумы АЦП, ошибки квантования коэффициентов, ошибки округления результатов арифметических операций и ошибки за счет переполнения при суммировании. Влияние ошибок коэффициентов проявляется в отклонении частотной характеристики от требуемой формы. Данное отклонение в предельном случае может означать, что фильтр не удовлетворяет заданным требованиям. В конкретной задаче разработки фильтра подходящую длину слова можно определить, получив частотные характеристики для нескольких значений длины коэффициентов. Существенную информацию можно получить, анализируя ошибки, которые вводятся квантованием коэффициентов:
где hq (n) – квантованный коэффициент, h (n) – неквантованный, e (n) – ошибки квантования коэффициентов Физически величину e (n) можно рассматривать как импульсную характеристику некоторого фильтра, соединенного параллельно с требуемым. В частотной области влияние ошибки коэффициентов представляются паразитной передаточной функцией, также включенной параллельно с передаточной функцией точного фильтра. Целью разработчика является ограничение амплитуды Основным следствием квантования коэффициентов является возможное увеличение максимальной неравномерности в полосе пропускания и снижение максимального затухания в полосе подавления. Ошибки округления можно минимизировать, если точно представить все произведения в регистрах с удвоенной точностью, а результаты округлять после получения окончательного результата, т.е. вычисления y (n). Данный подход приводит к меньшей ошибке, чем при округлении каждого промежуточного произведения до суммирования. Ошибки переполнения возникают при сложении двух произведений, например, Если выходная последовательность y (n) согласуется по размеру с данной длиной слова, то переполнение в частичных суммах будет незначительным. Данное свойство является отличительной особенностью в арифметике с дополнением до двух. Если же y (n) выходит за разрешенные границы, то эту ситуацию следует предотвратить. Можно выявлять и корректировать переполненение, но этот метод не эффективен. Другой способ – масштабировать коэффициенты и/или входные данные, чтобы избежать переполнения или держать его в определенных пределах. Для масштабирования коэффициентов можно использовать один из следующих подходов:
или
Если использовать первое выражение, то переполнения не произойдет никогда, но масштабирование в таком виде часто излишне, так как рассчитано на наихудший вариант переполнения, что практически не реально. Кроме того, в этом случае возникает большой шум квантования коэффициентов, чем в методе с использованием второго выражения, в котором предполагается, что переполнение происходит время от времени. Масштабирование входных данных часто приводит к ухудшению отношения сигнал/шум. Третий подход – это масштабировать вход и выход с целью получения наилучшего отношения сигнал/шум. Эффективным является масштабирование с масштабом, представляющим собой степень двойки.
34. Общая структурная схема системы ЦОС. Дискретизация сигналов. Теорема отсчетов.
УВЗ (УВХ) – устройство выборки-запоминания (устройство выборки-хранения); АЦП – аналого-цифровой преобразователь; АЛУ – арифметико-логическое устройство; ЦАП – цифро-aналоговый преобразователь. Как видно, она включает, по крайней мере, три элемента: аналого-цифровой преобразователь (АЦП), процессорный блок, в состав которого входит арифметико-логическое устройство (АЛУ), контроллер и устройство микропрограммного управления, а также запоминающие устройства данных, коэффициентов и команд; цифро-аналоговый преобразователь (ЦАП), установленный на выходе. Непосредственная передача непрерывных во времени сигналов в цифровые устройства и электронно-вычислительные машины невозможна, так как аналоговые и цифровые сигналы имеют разную математическую и физическую форму представления и для их совместимости необходима процедура, известная как аналого-цифровое преобразование. Математически эта процедура представляет собой преобразование непрерывной функции Под дискретизацией обычно понимается процесс преобразования непрерывной по аргументу функции
Легко видеть, что при этом основная задача состоит в правильном выборе интервала дискретизации При квантовании происходит замена непрерывных по амплитуде значений дискретного по времени сигнала В основу дискретизации положена принципиальная возможность представления непрерывных сигналов в виде взвешенных сумм:
где
Очевидно, что по дискретным значениям Как уже отмечалось, при дискретизации приходится решать вопрос о том, как часто следует брать отсчеты функции, т.е. каким должен быть шаг дискретизации Наиболее распространенной является равномерная дискретизация, при которой шаг (интервал) дискретизации остается постоянным: Величина, обратная интервалу дискретизации, Равномерная дискретизация, как известно, основывается на разложении исходного непрерывного сигнала в ряд Котельникова. Это разложение составляет основу теоремы Котельникова (за рубежом ее называют теоремой Шеннона, или просто теоремой отсчетов). Суть теоремы отсчетов состоит в следующем: непрер
|