Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

End Sub. 28.Метод Ньютона для решения нелинейных уравнений вида f(x)Если известно хорошее начальное приближение решения уравнения f(x) = 0




28.Метод Ньютона для решения нелинейных уравнений вида f(x)Если известно хорошее начальное приближение решения уравнения f(x) = 0, то эффективным методом повышения точности является метод Ньютона (метод касательных). Сформулируем достаточное условие сходимости метода.

Пусть функция f(x) определена и дважды дифференцируема на интервале от a до b, причём должно быть f(a)f(b)<0 , а производные f(x) и f'(x) сохраняют знак на интервале от a до b. Тогда, исходя из начального приближения, Хо принадлежащие [a, b] и удовлетворяющих условию. , можно построить последовательность: Хк+1 = Хк - (f(X) / f,(X)), К=0,1,2,3... , сходящуюся к единственному на интервале [a, b] корнюуравнения f(x)=0. Метод Ньютона позволяет (допускает) простую геометрическую интерпретацию.

Для завершения итерационного процесса можно использовать условия или .

 
 

Объем вычислений в методе Ньютона больше, чем в других методах, поскольку приходится находить значение не только функции , но и ее производной. Однако скорость сходимости здесь значительно выше.

 

 

Решить уравнение на отрезке методом Ньютона c точностью .

Решение. Определим производные заданной функции : ; . Проверим выполнение условия сходимости на концах заданного интервала: - не выполняется, - выполняется. За начальное приближение корня можно принять .

Находим первое приближение:

.

Аналогично находится второе приближение:

.

Третье приближение:

.

Так как , итерационный процесс заканчивается. Таким образом, приближенным решением данного уравнения является Function F(x)

F = x ^ 3 + x - 1


Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой





Дата добавления: 2015-06-12; просмотров: 404. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.021 сек.) русская версия | украинская версия
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7