Студопедия — Параметры эллипса
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Параметры эллипса






Точки F 1(– c, 0) и F 2(c, 0), где называются фокусами эллипса, при этом величина 2 c определяет междуфокусное расстояние.

Точки А 1(– а, 0), А 2(а, 0), В 1(0, – b), B 2(0, b) называются вершинами эллипса (рис. 9.2), при этом А 1 А 2 = 2 а образует большую ось эллипса, а В 1 В 2 – малую, – центр эллипса.

Основные параметры эллипса, характеризующие его форму:

ε; = с / aэксцентриситет эллипса;

фокальные радиусы эллипса (точка М принадлежит эллипсу), причем r 1 = a + εx, r 2 = aεx;

директрисы эллипса.

 
 

 


Рис. 9.2

 

Для эллипса справедливо: директрисы не пересекают границу и внутреннюю область эллипса, а также обладают свойством

Эксцентриситет эллипса выражает его меру «сжатости».

Если b > a > 0, то эллипс задается уравнением (9.7), для которого вместо условия (9.8) выполняется условие

. (9.9)

Тогда 2 а – малая ось, 2 b – большая ось, – фокусы (рис. 9.3). При этом r 1 + r 2 = 2 b,
ε; = c / b, директрисы определяются уравнениями:

 
 

 


Рис. 9.3

При условии имеем (в виде частного случая эллипса) окружность радиуса R = a. При этом с = 0, а значит, ε; = 0.

Точки эллипса обладают характеристическим свойством: сумма расстояний от каждой из них до фокусов есть величина постоянная, равная 2 а (рис. 9.2).

Для параметрического задания эллипса (формула (9.7)) в случаях выполнения условий (9.8) и (9.9) в качестве параметра t может быть взята величина угла между радиус-вектором точки, лежащей на эллипсе, и положительным направлением оси Ox:

где

Если центр эллипса с полуосями находится в точке то его уравнение имеет вид:

(9.10)

 

Пример 1. Привести уравнение эллипса x 2 + 4 y 2 = 16 к каноническому виду и определить его параметры. Изобразить эллипс.

Решение. Разделим уравнение x 2 + 4 y 2 = 16 на 16, после чего получим:

По виду полученного уравнения заключаем, что это каноническое уравнение эллипса (формула (9.7)), где а = 4 – большая полуось, b = 2 – малая полуось. Значит, вершинами эллипса являются точки A 1(–4, 0), A 2(4, 0), B 1(0, –2), B 2(0, 2). Так как – половина междуфокусного расстояния, то точки являются фокусами эллипса. Вычислим эксцентриситет:

Директрисы D 1, D 2 описываются уравнениями:

Изображаем эллипс (рис. 9.4).

 


Рис. 9.4

 

Пример 2. Определить параметры эллипса

Решение. Сравним данное уравнение с каноническим уравнением эллипса со смещенным центром. Находим центр эллипса С: Большая полуось малая полуось прямые – главные оси. Половина междуфокусного расстояния а значит, фокусы Эксцентриситет Директрисы D 1 и D 2 могут быть описаны с помощью уравнений: (рис. 9.5).

 

 


Рис. 9.5

Пример 3. Определить, какая кривая задается уравнением, изобразить ее:

1) x 2 + y 2 + 4 x – 2 y + 4 = 0; 2) x 2 + y 2 + 4 x – 2 y + 6 = 0;

3) x 2 + 4 y 2 – 2 x + 16 y + 1 = 0; 4) x 2 + 4 y 2 – 2 x + 16 y + 17 = 0;

5)

Решение. 1) Приведем уравнение к каноническому виду методом выделения полного квадрата двучлена:

x 2 + y 2 + 4 x – 2 y + 4 = 0;

(x 2 + 4 x) + (y 2 – 2 y) + 4 = 0;

(x 2 + 4 x + 4) – 4 + (y 2 – 2 y + 1) – 1 + 4 = 0;

(x + 2)2 + (y – 1)2 = 1.

Таким образом, уравнение может быть приведено к виду

(x + 2)2 + (y – 1)2 = 1.

Это уравнение окружности с центром в точке (–2, 1) и радиусом R = 1 (рис. 9.6).

 
 

 


Рис. 9.6

 

2) Выделяем полные квадраты двучленов в левой части уравнения и получаем:

(x + 2)2 + (y – 1)2 = –1.

Это уравнение не имеет смысла на множестве действительных чисел, так как левая часть неотрицательна при любых действительных значениях переменных x и y, а правая – отрицательна. Поэтому говорят, что это уравнение «мнимой окружности» или оно задает пустое множество точек плоскости.

3) Выделяем полные квадраты:

x 2 + 4 y 2 – 2 x + 16 y + 1 = 0;

(x 2 – 2 x + 1) – 1 + 4(y 2 + 4 y + 4) – 16 + 1 = 0;

(x – 1)2 + 4(y + 2)2 – 16 = 0;

(x – 1)2 + 4(y + 2)2 = 16.

Значит, уравнение имеет вид:

или

Полученное уравнение, а следовательно, и исходное задают эллипс. Центр эллипса находится в точке О 1(1, –2), главные оси задаются уравнениями y = –2, x = 1, причем большая полуось а = 4, малая полуось b = 2 (рис. 9.7).

 

 


Рис. 9.7

 

4) После выделения полных квадратов имеем:

(x – 1)2 + 4(y + 2)2 – 17 + 17 = 0 или (x – 1)2 + 4(y + 2)2 = 0.

Полученное уравнение задает единственную точку плоскости с координатами (1, –2).

5) Приведем уравнение к каноническому виду:

Очевидно, оно задает эллипс, центр которого находится в точке главные оси задаются уравнениями причем большая полуось малая полуось (рис. 9.8).

 
 

 

 


Рис. 9.8

 

Пример 4. Записать уравнение касательной к окружности радиуса 2 с центром в правом фокусе эллипса x 2 + 4 y 2 = 4 в точке пересечения с осью ординат.

Решение. Уравнение эллипса приведем к каноническому виду (9.7):

Значит, и правый фокус – Поэтому, искомое уравнение окружности радиуса 2 имеет вид (рис. 9.9):

Окружность пересекает ось ординат в точках, координаты которых определяются из системы уравнений:

Получаем:

Пусть это точки N (0; –1) и М (0; 1). Значит, можно построить две касательные, обозначим их Т 1 и Т 2. По известному свойству касательная перпендикулярна радиусу, проведенному в точку касания.

Пусть Тогда уравнение касательной Т 1 примет вид:

значит, или Т 1:

Тогда уравнение касательной Т 2 примет вид:

значит, или Т 2:

 


Рис. 9.9

Пример 5. Записать уравнение окружности, проходящей через точку М (1, –2) и точки пересечения прямой x – 7 y + 10 = 0 с окружностью x 2 + y 2 – 2 x + 4 y – 20 = 0.

Решение. Найдем точки пересечения прямой x – 7 y + 10 = 0 с окружностью x 2 + y 2 – 2 x + 4 y – 20 = 0, решив систему уравнений:

Выразим х из первого уравнения системы:

x = 7 y – 10.

Затем подставим во второе:

(7 y – 10)2 + y 2 – 2(7 y – 10) + 4 y – 20 = 0.

Оно равносильно уравнению

y 2 – 3 y + 2 = 0.

Используя формулы корней квадратного уравнения, найдем y 1 = 1, y 2 = 2, откуда x 1 = –3, x 2 = 4.

Итак, имеем три точки, лежащие на окружности: M (1, –2), M 1(4, 2) и M 2(–3, 1). Пусть О 1(x 0, y 0) – центр окружности. Тогда где R – радиус окружности.

Найдем координаты векторов:

Значит,

что равносильно системе

Упрощаем ее:

Решая последнюю систему, получаем ответ:

Таким образом, центр окружности находится в точке (0,5; 1,5), ее радиус

Тогда каноническое уравнение искомой окружности имеет вид:

 







Дата добавления: 2015-06-15; просмотров: 7774. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия