Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поворот и параллельный перенос параболы





Парабола – одна из самых распространённых линий в математике, и строить её придётся действительно часто. Поэтому, пожалуйста, особенно внимательно отнестись к заключительному параграфу урока, где я разберу типовые варианты расположения данной кривой.

! Примечание: как и в случаях с предыдущими кривыми, корректнее говорить о повороте и параллельном переносе координатных осей, но автор ограничится упрощённым вариантом изложения, чтобы у читателя сложились элементарные представления о данных преобразованиях.

1) Поворот вокруг вершины. Если в уравнении присутствует знак «минус»: , то это означает разворот параболы на 180 градусов относительно своего канонического положени я. А если в уравнении переменные «поменялись местами»: , то это означает поворот канонической параболы на 90 градусов против часовой стрелки.

На следующем чертеже изображены графики кривых :

Оба уравнения задают неканоническое расположение нашей подопытной параболы , причём во втором случае легко получить функциональную запись, к которой мы привыкли в курсе математического анализа: .

Таким образом, все параболы, с которыми мы обычно работаем – не каноничны! Я очень хотел «уложить на бок» классическую параболу и разобрать каноническое уравнение , но, к сожалению, у неё достаточно малый фокальный параметр , и чертеж с точкой фокуса , директрисой был бы крайне невразумителен.

2) Параллельный перенос. Без всякой оригинальности. Уравнение задаёт ту же параболу с вершиной в точке . По моим наблюдениям, во многих задачах матана очень популярен частный случай – когда каноническая парабола сдвигается влево или вправо по оси абсцисс. Ну, и как дополнительная опция, разворачивается, если при переменной «икс» есть знак «минус».

Соответствующее творческое задание для самостоятельного решения:

Пример 7

Построить параболу . Привести уравнение линии к каноническому виду, найти фокус и уравнение директрисы.

Как лучше действовать?

По условию требуется построить параболу . Именно такую – в неканоническом виде! Поэтому в первой части задачи следует представить уравнение в виде , что позволит сразу определить вершину. Затем по образцу Примера 6 нужно провести поточечное построение линии, работая с уравнениями .

Вторая часть задания предполагает приведение уравнения к каноническому виду. Проанализируйте равенство – есть ли поворот, есть ли параллельный перенос? После того, как выясните каноническую запись , необходимо найти фокус параболы и уравнение её директрисы. Обратите внимание, что в контексте условия это, вероятнее всего, нужно сделать в каноническом положении!

Ну, а наша обзорная экскурсия подошла к концу, и я надеюсь, что у вас не возникло и не возникнет трудностей с тремя атлантами темы – эллипсом, гиперболой и параболой. Предлагаю узнать новый теоретический материал и закрепить практические навыки на уроке Задачи с линиями 2-го порядка.

Желаю успехов!

Решения и чертежи:


Определим координаты фокусов:

Выполним чертёж:

Перед вами «школьная» гипербола в каноническом положении. График функции получается путём поворота (вокруг начала координат) построенного графика на 45 градусов против часовой стрелки (а если строже – путём поворота системы координат на противоположно ориентированный угол в «минус» 45 градусов).

И в общем случае – график обратной пропорциональности представляет собой равностороннюю гиперболу, уравнение которой можно привести к каноническому виду .

Пример 7: Решение: преобразуем уравнение:

Вершина параболы находится в точке , ветви направлены влево. С помощью уравнений найдём дополнительные точки:

Выполним чертёж:

Парабола получена путём поворота параболы на 180 градусов и её параллельного переноса в точку . Из канонического уравнения находим фокальный параметр , фокус и уравнение директрисы .
Примечание: в случае необходимости нетрудно найти координаты фокуса и уравнение директрисы неканонически расположенной параболы . Учитывая поворот и параллельный перенос: .







Дата добавления: 2015-06-15; просмотров: 1063. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия