Упражнения.
- Центром линии называется точка плоскости, по отношению к которой точки линии симметричны парами. Линии второго порядка, обладающие центром, называются центральными. Докажите, что точка
является центром линии (1) тогда и только тогда, когда - Определитель второго порядка
, составленный из коэффициентов при старших слагаемых уравнения (1), называется дискриминантом уравнения (1). Докажите, что линия второго порядка центральная тогда и только тогда, когда . Докажите, что координаты центра находятся по формулам - Определитель
называется дискриминантом левой части уравнения (1); здесь и для ю При переносе начала координат в центр линии (1) с помощью преобразования уравнение (1) приобрело вид Докажите, что - Установите, что следующие линии являются центральными, и найдите координаты центра каждой линии:
- Уравнение (2) подвергнем преобразованию поворота осей на угол
при условии, что Докажите, что в новых координатах уравнение линии примет вид где и - Уравнение второй степени называется эллиптическим, если
, гиперболическим, если и параболическим, если . Докажите, что уравнение центральной линии может быть только эллиптическим или гиперболическим. - Докажите, что каждое эллиптическое уравнение является уравнением эллипса, либо вырожденного эллипса, либо мнимого эллипса.
- Докажите, что каждое гиперболическое уравнение определяет уравнение гиперболы либо вырожденной гиперболы.
- Докажите, что если
, то линия либо не имеет центра, либо имеет бесконечно много центров. - Уравнение (1) подвергнем преобразованию поворота осей на угол
при условии, что и . Докажите, что в новых координатах уравнение линии примет вид где , либо вид где
Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...
|
Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...
|
Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...
|
Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...
|
Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...
Броматометрия и бромометрия Броматометрический метод основан на окислении восстановителей броматом калия в кислой среде...
Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...
|
Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...
Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...
Интуитивное мышление Мышление — это психический процесс, обеспечивающий познание сущности предметов и явлений и самого субъекта...
|
|