Упражнения.
- Центром линии называется точка плоскости, по отношению к которой точки линии симметричны парами. Линии второго порядка, обладающие центром, называются центральными. Докажите, что точка
является центром линии (1) тогда и только тогда, когда - Определитель второго порядка
, составленный из коэффициентов при старших слагаемых уравнения (1), называется дискриминантом уравнения (1). Докажите, что линия второго порядка центральная тогда и только тогда, когда . Докажите, что координаты центра находятся по формулам - Определитель
называется дискриминантом левой части уравнения (1); здесь и для ю При переносе начала координат в центр линии (1) с помощью преобразования уравнение (1) приобрело вид Докажите, что - Установите, что следующие линии являются центральными, и найдите координаты центра каждой линии:
- Уравнение (2) подвергнем преобразованию поворота осей на угол
при условии, что Докажите, что в новых координатах уравнение линии примет вид где и - Уравнение второй степени называется эллиптическим, если
, гиперболическим, если и параболическим, если . Докажите, что уравнение центральной линии может быть только эллиптическим или гиперболическим. - Докажите, что каждое эллиптическое уравнение является уравнением эллипса, либо вырожденного эллипса, либо мнимого эллипса.
- Докажите, что каждое гиперболическое уравнение определяет уравнение гиперболы либо вырожденной гиперболы.
- Докажите, что если
, то линия либо не имеет центра, либо имеет бесконечно много центров. - Уравнение (1) подвергнем преобразованию поворота осей на угол
при условии, что и . Докажите, что в новых координатах уравнение линии примет вид где , либо вид где
Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...
|
Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...
|
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при которых тело находится под действием заданной системы сил...
|
Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...
|
Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...
Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы
№ 113/у Обменная карта родильного дома...
Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...
|
Лечебно-охранительный режим, его элементы и значение.
Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...
Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем
1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...
Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...
|
|