Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Упражнения.





  1. Центром линии называется точка плоскости, по отношению к которой точки линии симметричны парами. Линии второго порядка, обладающие центром, называются центральными. Докажите, что точка является центром линии (1) тогда и только тогда, когда
  2. Определитель второго порядка , составленный из коэффициентов при старших слагаемых уравнения (1), называется дискриминантом уравнения (1). Докажите, что линия второго порядка центральная тогда и только тогда, когда . Докажите, что координаты центра находятся по формулам
  3. Определитель называется дискриминантом левой части уравнения (1); здесь и для ю При переносе начала координат в центр линии (1) с помощью преобразования уравнение (1) приобрело вид Докажите, что
  4. Установите, что следующие линии являются центральными, и найдите координаты центра каждой линии:
    • а)
    • б)
    • в)
    • г)
  5. Уравнение (2) подвергнем преобразованию поворота осей на угол при условии, что Докажите, что в новых координатах уравнение линии примет вид где и
  6. Уравнение второй степени называется эллиптическим, если , гиперболическим, если и параболическим, если . Докажите, что уравнение центральной линии может быть только эллиптическим или гиперболическим.
  7. Докажите, что каждое эллиптическое уравнение является уравнением эллипса, либо вырожденного эллипса, либо мнимого эллипса.
  8. Докажите, что каждое гиперболическое уравнение определяет уравнение гиперболы либо вырожденной гиперболы.
  9. Докажите, что если , то линия либо не имеет центра, либо имеет бесконечно много центров.
  10. Уравнение (1) подвергнем преобразованию поворота осей на угол при условии, что и . Докажите, что в новых координатах уравнение линии примет вид где , либо вид где

 

 







Дата добавления: 2015-06-15; просмотров: 442. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия