Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Упражнения.





  1. Центром линии называется точка плоскости, по отношению к которой точки линии симметричны парами. Линии второго порядка, обладающие центром, называются центральными. Докажите, что точка является центром линии (1) тогда и только тогда, когда
  2. Определитель второго порядка , составленный из коэффициентов при старших слагаемых уравнения (1), называется дискриминантом уравнения (1). Докажите, что линия второго порядка центральная тогда и только тогда, когда . Докажите, что координаты центра находятся по формулам
  3. Определитель называется дискриминантом левой части уравнения (1); здесь и для ю При переносе начала координат в центр линии (1) с помощью преобразования уравнение (1) приобрело вид Докажите, что
  4. Установите, что следующие линии являются центральными, и найдите координаты центра каждой линии:
    • а)
    • б)
    • в)
    • г)
  5. Уравнение (2) подвергнем преобразованию поворота осей на угол при условии, что Докажите, что в новых координатах уравнение линии примет вид где и
  6. Уравнение второй степени называется эллиптическим, если , гиперболическим, если и параболическим, если . Докажите, что уравнение центральной линии может быть только эллиптическим или гиперболическим.
  7. Докажите, что каждое эллиптическое уравнение является уравнением эллипса, либо вырожденного эллипса, либо мнимого эллипса.
  8. Докажите, что каждое гиперболическое уравнение определяет уравнение гиперболы либо вырожденной гиперболы.
  9. Докажите, что если , то линия либо не имеет центра, либо имеет бесконечно много центров.
  10. Уравнение (1) подвергнем преобразованию поворота осей на угол при условии, что и . Докажите, что в новых координатах уравнение линии примет вид где , либо вид где

 

 







Дата добавления: 2015-06-15; просмотров: 442. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия