Упражнения.
- Центром линии называется точка плоскости, по отношению к которой точки линии симметричны парами. Линии второго порядка, обладающие центром, называются центральными. Докажите, что точка
является центром линии (1) тогда и только тогда, когда - Определитель второго порядка
, составленный из коэффициентов при старших слагаемых уравнения (1), называется дискриминантом уравнения (1). Докажите, что линия второго порядка центральная тогда и только тогда, когда . Докажите, что координаты центра находятся по формулам - Определитель
называется дискриминантом левой части уравнения (1); здесь и для ю При переносе начала координат в центр линии (1) с помощью преобразования уравнение (1) приобрело вид Докажите, что - Установите, что следующие линии являются центральными, и найдите координаты центра каждой линии:
- Уравнение (2) подвергнем преобразованию поворота осей на угол
при условии, что Докажите, что в новых координатах уравнение линии примет вид где и - Уравнение второй степени называется эллиптическим, если
, гиперболическим, если и параболическим, если . Докажите, что уравнение центральной линии может быть только эллиптическим или гиперболическим. - Докажите, что каждое эллиптическое уравнение является уравнением эллипса, либо вырожденного эллипса, либо мнимого эллипса.
- Докажите, что каждое гиперболическое уравнение определяет уравнение гиперболы либо вырожденной гиперболы.
- Докажите, что если
, то линия либо не имеет центра, либо имеет бесконечно много центров. - Уравнение (1) подвергнем преобразованию поворота осей на угол
при условии, что и . Докажите, что в новых координатах уравнение линии примет вид где , либо вид где
Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...
|
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при которых тело находится под действием заданной системы сил...
|
Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...
|
Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...
|
Интуитивное мышление Мышление — это психический процесс, обеспечивающий познание сущности предметов и явлений и самого субъекта...
Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...
Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри:
Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...
|
Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом определения суточного расхода энергии...
ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...
Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2
Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК.
Решение. Подставим данные задачи в уравнение закона разбавления
К = a2См/(1 –a) =...
|
|