Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейные операции над векторами





 

Определение. Суммой + векторов и называется вектор, проведенный из начала к концу , если конец и начало совпадают. Приведенное определение сложения векторов называется правилом треугольника. Векторы и можно складывать, пользуясь правилом параллелограмма.

Если имеется n векторов , то их сумма определяется как вектор .

Определение. Разностью векторов и называется такой вектор = - , что выполняется равенство + = .

Легко показать, что для любого вектора , существует такой единственный вектор , называемый противоположным вектору

что + = . Вектор, противоположный вектору , будем обозначать – .

Определение. Произведением вектора на число λ (λ 0) называется вектор , удовлетворяющий следующим условиям:

1) векторы и одинаково направлены, если λ>0, и противоположно направлены, если λ<0;

2) | |=|λ|| |.

 

По определению, произведение произвольного вектора на число 0 есть нулевой вектор, т.е. 0 = .

Введенные операции сложения векторов и умножение вектора на число называются линейными. Они обладают следующими свойствами:

1) сложение векторов коммутативно:

+ = + , " , ;

2) сложение векторов ассоциативно:

( + )+ = +( + ), " , , ;

3) + = , " ;

4) +(- )=0, " ;

5) умножение вектора на число ассоциативно:

α (β ) = (α β) , " " α, β Î R;

6) 1 = , " ;

7) умножение вектора на число дистрибутивно по отношению к

сложению чисел:

(α+β) , " , " α, β Î R;

8) умножение вектора на число дистрибутивно по отношению к сложению векторов:

α( + )=α , " , , " α Î R;

Множество всех векторов пространства (плоскости), удовлетворяющих свойствам 1) – 8), называется линейным, или векторным пространством, и обозначается ().

 

Теорема (необходимое и достатаочное условие коллинеарности двух векторов). Для того чтобы векторы и были коллинеарны, необходимо и достаточно, чтобы существовало число λ, удовлетворяющее условию:

= λ .

 







Дата добавления: 2015-06-15; просмотров: 474. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия