Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейная зависимость векторов





 

Пусть дана система векторов

(1)

и α1, α2,...αn - действительные числа. Тогда векторы вида

называются линeйнoй комбинaциeй вeктоpов cиcтeмы (1).

Определение. Система векторов (1) называется линейно зависимой, если существует такая линейная комбинация этих векторов, равная нулевому вектору, т.е.

= (2)

и хотя бы одно из чисел .

Определение. Система (1) называется линейно независимой, если равенство (2) возможно тогда и только тогда, когда все числа αi=0.

Определение. Если какой-либо вектор можно представить в виде линейной комбинации векторов системы (1), т.е.

= ,

то говорят, что вектор линейно выражается через векторы системы (1).

Теорема. Для того чтобы векторы системы (1) были линейно зависимы (n>1), необходимо и достаточно, чтобы по крайней мере один из них линейно выражался через остальные.

Следствие. Если векторы системы (1) линейно независимы, то ни один из них нельзя линейно выразить через остальные. В частности, ни один из них не может быть нулевым.

 

Теорема. Для того чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны.

Следствие. Два вектора линейно независимы тогда и только тогда, когда они неколлинеарны.

 

Теорема. Любой вектор на плоскости можно разложить по любым двум неколлинеарным векторам и этой плоскости, т.е. представить в виде:

причем это разложение единственно.

Теорема. Для того чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны.

Следствие. Три вектора линейно независимо тогда и только тогда, когда они некомпланарны.

 

Теорема. Любой вектор можно разложить по трем некомпланарны векторам , и , т.е. представить в виде:

причем это разложение единственно.

Tеорема. Любые четыре вектора линейно зависимы.

 

Определение. Говорят, что два лежащих в плоскости α линейно независимых вектора и (любые три линейно независимых вектора , и ) образуют на этой плоскости (в пространстве) базис, если любой вектор, лежащий в этой плоскости α (любой вектор пространства), может быть представлен в виде линейной комбинации векторов и (, , ).

Итак:

1) любая пара лежащих в данной плоскости неколлинеарнах векторов образует базис на этой плоскости;

2) любая тройка некомпланарных векторов образует базис в пространстве.

 








Дата добавления: 2015-06-15; просмотров: 427. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия