Линейная зависимость векторов
Пусть дана система векторов
и α1, α2,...αn - действительные числа. Тогда векторы вида называются линeйнoй комбинaциeй вeктоpов cиcтeмы (1). Определение. Система векторов (1) называется линейно зависимой, если существует такая линейная комбинация этих векторов, равная нулевому вектору, т.е.
и хотя бы одно из чисел Определение. Система (1) называется линейно независимой, если равенство (2) возможно тогда и только тогда, когда все числа αi=0. Определение. Если какой-либо вектор
то говорят, что вектор Теорема. Для того чтобы векторы системы (1) были линейно зависимы (n>1), необходимо и достаточно, чтобы по крайней мере один из них линейно выражался через остальные. Следствие. Если векторы системы (1) линейно независимы, то ни один из них нельзя линейно выразить через остальные. В частности, ни один из них не может быть нулевым.
Теорема. Для того чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны. Следствие. Два вектора линейно независимы тогда и только тогда, когда они неколлинеарны.
Теорема. Любой вектор причем это разложение единственно. Теорема. Для того чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны. Следствие. Три вектора линейно независимо тогда и только тогда, когда они некомпланарны.
Теорема. Любой вектор причем это разложение единственно. Tеорема. Любые четыре вектора линейно зависимы.
Определение. Говорят, что два лежащих в плоскости α линейно независимых вектора Итак: 1) любая пара лежащих в данной плоскости неколлинеарнах векторов образует базис на этой плоскости; 2) любая тройка некомпланарных векторов образует базис в пространстве.
|