Понятие вектора
Пусть А – произвольное непустое множество. Декартовым кваратом А называется множество A 2 = Бинарным отношением на А называется любое подмножество Отношением эквивалентности на А называется такое бинарное отношение 1) 2) если ( 3) если (
Теорема. Любое отношение эквивалентности на множестве А определяет разбиение этого множества на попарно непересекающиеся классы (классы эквивалентности). Обратно, любое разбиение множества А на попарно непересекающиеся классы определяет отношение эквивалентности на А.
Направленный отрезок – отрезок, у которого указано, какая точка является началом, а какая концом. Обозначается Пусть заданы направленные отрезки Если направленные отрезки Абсолютной величиной или модулем (длиной) направленного отрезка Два направленных отрезка
Теорема. Отношение равенства направленных отрезков является отношением эквивалентности.
Тогда вектором называется абстрактный объект, совпадающий с некоторым классом эквивалентности. Таким образом, каждый из равных друг другу направленных отрезков считается представлением (изображением) данного вектора, а неравные направленные отрезки считаются представлением разных векторов. Поэтому в дальнейшем вектор изображается точно так, как и соответствующий ему направленный отрезок.
Векторы Три и более векторов называются компланарными, если образующие их направленные отрезки параллельны некоторой плоскости. Нулевым вектором называется вектор, начало которого совпадает с его концом (обозначается
|