Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 2. Решение. Оператор A линеен





, .

 

Решение. Оператор A линеен. Докажем неравенство ограниченности:

. (3)

Значит, оператор А ограничен, причем .

В отличие от предыдущих примеров, здесь не существует ненулевого вектора, при котором неравенство (3) превращается в равенство (подумайте, почему). Поэтому будем подбирать ненулевые векторы х так, чтобы обе части (3) сколь угодно мало отличались друг от друга. Возьмём вектор (единица стоит на 2 k -м месте). Тогда имеем , откуда (см. решение примера 1). Ввиду произвольности k отсюда следует, что (почему?). Окончательно получаем .

 

в) Оператор взвешенного сдвига.

 

Пример 1. .

Решение. Oчевидно, что оператор A линеен. Докажем его ограниченность:

, (4)

поскольку, как легко проверить, . Следовательно, . Так как при неравенство (4) превращается в равенство, то (см. решения предыдущих примеров). Итак, .

Пример 2. .

 

Решение. Oчевидно, что оператор A линеен. Докажем его ограни-ченность. Имеем

(мы воспользовались тем, что ). Значит, .

Как и в примере 2 пункта б), не существует ненулевого вектора, при котором неравенство (5) превращается в равенство (подумайте, почему). Поэтому будем подбирать ненулевые векторы х так, чтобы обе части (5) сколь угодно мало отличались друг от друга. Возьмём последовательность , состоящую из функций, сосредоточенных в окрестности точки и таких, что . Тогда

.

Значит, . Перейдем в последнем неравенстве к пределу при . Воспользовавшись тем, что при , получим, что

.

Из полученных неравенств следует, что .

 

г) Интегральный оператор, действующий из X в Y.

 

Пример 1. .

Решение. Из свойства линейности интеграла следует, что А – линейный оператор. Далее,

. (6)

Значит, оператор А ограничен, причем . Заметим, что неравенство (6) превращается в равенство при , но эта функция не принадлежит . Возьмем следующую последовательность функций из , которые «похожи» на при больших n (сделайте чертеж):

Легко видеть, что в .

Вычислим в . Так как функция четная, то

.

Следовательно, , а потому .

Окончательно получаем, что .

 

3. Для данных нормированных пространств X, Y,последовательности операторов и оператора установить: 1) сходится ли поточечно (сильно) к оператору А; 2) сходится ли по норме к оператору А.

 

Пример 1. .

Решение. 1) Заметим, что при всех

при

(остаток сходящегося ряда стремится к 0). Значит, последовательность сходится поточечно (то есть сильно) к оператору А.

2) Возьмем вектор из l 1. Так как , то

Следовательно, не сходится по норме к оператору А.








Дата добавления: 2015-08-30; просмотров: 831. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия