Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обратные операторы





Определение. Пусть X, Y – векторные пространства над полем К, - линейный оператор. Оператор А называется обратимым, если уравнение

(1)

при любом у из имеет единственное решение х из Х.

При этом отображение , ставящее в соответствие каждому у из решение х уравнения (1), называется оператором, обратным к А.

Оператор имеет обратный тогда и только тогда, когда он биективен.

Ниже - множество значений (образ) оператора А, Ker A:= ядро (множество нулей) оператора А.

Определение. Оператор , удовлетворяющий условию ВА=IX, называется левым обратным к А.

Лемма. ПустьX, Y – векторные пространства над К, - линейный оператор. Следующие утверждения равносильны:

1) оператор А имеет левый обратный;

2) оператор А инъективен;

3)Ker A={0}.

Для нахождения левого обратного решают уравнение (1) с

Теорема (Банаха об обратном операторе). ПустьX, Y – банаховы пространства над полем , - ограниченный линейный оператор. Если оператор А обратим, то его обратный тоже ограничен.

 

3.3.1. При каких значениях параметра обратим данный оператор ? Найдите обратный оператор , когда он существует (таблица 3.3.1).

Таблица 3.3.1

 

Вариант A
1 2
 
 
 

Окончание таблицы 3.3.1

 

1 2
 
 
 
 
 
 
 

3.3.2. Пусть . Доказать, что существует непрерывный обратный оператор , и построить его (таблица 3.3.2).

 

Таблица 3.3.2

 

Вариант X Y A
1 2 3 4
 
 
 
 
 
 
 
 

Окончание таблицы 3.3.2

1 2 3 4
 
 

3.3.3. Пусть .

1) Что представляет собой множество значений оператора А?

2) Существует ли на левый обратный оператор ?

3) Является ли оператор ограниченным, если он существует?

4) Существует ли обратный оператор (таблица 3.3.3)?

Таблица 3.3.3

 

Вариант X Y A
1 2 3 4
 
 
 
 
 
 
 
         

Окончание таблицы 3.3.3

1 2 3 4
 
 
 

3.3.4 Пусть , где – числовой параметр, , Y − банаховы пространства. Выяснить, при каких значениях существует обратный оператор к оператору , и построить его. При каких значениях оператор непрерывно обратим? (таблица 3.3.4)?

 

Таблица 3.3.4

 

Вариант Y х
1 2 3 4
 
 
 
 
 
 
 

 

Окончание таблицы 3.3.4

 

1 2 3 4
 
 
 

 







Дата добавления: 2015-08-30; просмотров: 1118. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия