Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Типы математических моделей, используемых в задачах управления





В современной теории управления создаются и применяются математические модели двух основных типов (хотя в различных разделах теории эти типы и определяются по-разному).

Для технологических объектов это деление соответствует «феноменологическим» и «дедуктивным» моделям.

Под феноменологическими моделями понимаются преимущественно эмпирически восстанавливаемые входо-выходные зависимости, как правило, с небольшим числом входов и выходов.

Дедуктивное моделирование предполагает выяснение и описание основных физических закономерностей функционирования всех узлов исследуемого процесса и механизмов их взаимодействия. Дедуктивные модели намного богаче, они описывают процесс в целом, а не отдельные его режимы.

Первый тип моделей - аналитические модели (или, точнее говоря, модели данных).

Модели данных - это модели, которые не требуют, не используют и не отображают каких-либо гипотез о физических процессах (системах), в которых эти данные получены.

Второй тип моделей - системные модели (или модели систем). Это математические модели, которые строятся в основном на базе физических законов и гипотез о том, как система структурирована и, возможно, о том, как она функционирует.

В классическом понимании к моделям данных (аналитическим моделям) относятся все модели математической статистики. В последнее время характерные макро-изменения наблюдаются и для этих моделей. Связь с «Внешним миром» проникает в эту сферу моделирования как экспертно-статистические методы и системы, что существенно расширяет методологическую базу для принятия решений в задачах анализа данных и управления.

Однако именно системные модели допускают возможность работы в технологиях виртуального моделирования - в разнообразных системах реального времени (операторские, инженерные, биомедицинские интерфейсы, разнообразные системы диагностики и тестирования и т.д.).

Можно ожидать поэтому, что именно системные модели составят ядро современного этапа в развитии математического моделирования, хотя в настоящее время во многих «квази-виртуальных» применениях (например, в медицине) используются и типичные феноменологические модели и модели данных, в чем-то стыкующиеся с «базами знаний» современного искусственного интеллекта.

Вообще говоря, каждый из двух рассмотренных выше типов моделей имеет свои традиционные области применения. В практике управления отдельными технологическими процессами широко используются феноменологические модели. Простые по структуре, такие модели (обычно при числе переменных менее 10) достаточно хорошо отражают истинное поведение объекта в окрестности отдельных «режимов работы». В задачах управления, где цель управления часто состоит в компенсации возмущающих воздействий, уводящих процесс от желаемой рабочей точки, это вполне допустимо.

Во многих других задачах принципиально применимы только системные модели.

Часто в этом случае речь идет о развитии так называемого имитационного моделирования - динамическом моделировании объекта.

Такое моделирование осуществляется в реальном времени, что позволяет использовать его результаты в различных технологиях реального времени (от обнаружения неисправностей до интерактивного тренинга операторов).

Имитационное моделирование представляет собой серию численных экспериментов призванных получить эмпирические оценки степени влияния различных факторов (исходных величин) на некоторые зависящие от них результаты (показатели).

В общем случае, проведение имитационного эксперимента можно разбить на следующие этапы (алгоритм):

- Установить взаимосвязи между исходными и выходными показателями в виде математического уравнения или неравенства.

- Задать законы распределения вероятностей для ключевых параметров модели.

- Провести компьютерную имитацию значений ключевых параметров модели.

- Рассчитать основные характеристики распределений исходных и выходных показателей.

- Провести анализ полученных результатов и принять решение.

Результаты имитационного эксперимента могут быть дополнены статистическим анализом, а также использоваться для построения прогнозных моделей и сценариев.

 

 







Дата добавления: 2015-08-31; просмотров: 538. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия