Зависимость теплоёмкости от размеров структурных составляющих материалов
Тепловое движение атомов решётки сводится к их колебательному движению около некоторого положения равновесия. Согласно теории Дебая, число типов колебаний кристалла равно числу атомов N, а общее число колебаний трёхмерного тела равно 3N, что соответствует трём степеням свободы на каждое колебание. В соответствии с этим допущением должно выполняться соотношение:
где ν – число колебаний; g(ν) – плотность колебательных состояний; g(ν)dν - число колебаний с частотой от ν+dν; νmaх – максимальная частота колебаний кристаллической решётки, определяемая из условий равенства полного числа колебаний числу колебательных степеней свободы решётки. В нанокристаллах могут возникать волны, длина которых не превышает удвоенный размер частицы d. Поэтому со стороны низких частот колебательный спектр наноматериалов, в отличие от крупнокристаллических, ограничен некоторой минимальной частотой νmin ~ c/2d, где с – скорость света. Таким образом, общее число колебаний для частицы, содержащей N атомов, равно:
Численная величина νmin зависит от свойств вещества, формы и размеров частицы. Теоретические исследования показали, что функция распределения частот g(ν) малой частицы прямоугольной формы определяется выражением: g(ν) = a1Vν2 + a2Sν + a3L (1) где V, S, L – объём, площадь поверхности и общая длина рёбер наночастицы, соответственно; а1, а2, а3 – некоторые коэффициенты. Согласно теории Дебая теплоёмкость Сv крупнокристаллического твёрдого тела при условии hν < kBT, соответствует низким значениям абсолютной температуры Т и определяется выражением: Сv = вVT3 (2) где V – объём тела; в – некоторый коэффициент. С учётом уравнения (1) выражение для теплоёмкости наночастицы преобразуется к виду Сv(r) = в1VТ3 + в2SТ2 + в3Т (3) где в1, в2, в3 – некоторые коэффициенты. Если принять, что νmaх в наноматериалах совпадает с максимальной частотой колебаний решётки массивного кристалла, то первый член в уравнении (3) представляет собой дебаевский вклад в теплоёмкость, согласно уравнению (2). В случае наночастиц в выражении для теплоёмкости присутствуют также вклады второго и третьего слагаемых, обусловленные большой поверхностью. Таким образом, из формулы (3) следует, что при hνmах < kBT теплоёмкость наночастицы Сv(r) больше теплоёмкости Сv крупнокристаллического материала. Аналогичные результаты даёт квантовый подход при определении размерной зависимости теплоёмкости. Интервал температур, в котором колебания решётки следует рассматривать на основе квантовых представлений, весьма узкий. Температура вырождения, при которой в идеальном газе начинают проявляться квантовые эффекты, определяется выражением: Тв = (h2/mk)(N/V)2/3 где m – масса; N – число атомов; V – объём системы. Подстановка числовых значений для протонов даёт значение температуры вырождения порядка 10 К. Таким образом, квантовомеханическое исследование колебаний решётки необходимо при Т < 10 К. При более высоких температурах решётку можно рассматривать с классических позиций. В квантовом приближении для сферической частицы радиусом r, содержащей N атомов, общее число колебаний равно: N = (2/9π)r3kд3 + (1/4π)r2kд2 + (2/3π)rkд (4) где kд – волновой вектор, соответствующий максимальной частоте колебаний νmaх = kдс/2π, с – скорость света. Волновой вектор – вектор, определяющий направление распространения и пространственный период плоской монохроматической волны. Модуль волнового вектора называется волновым числом k. Волновое число определяет пространственный период волны или длину волны λ: k = 2π/λ. Слагаемые в правой части уравнения (4) учитывают объёмный, поверхностный и линейный вклады, соответственно. С учётом этого уравнения выражение для теплоёмкости кристалла радиуса (r) для области температур hνmin < kBT приобретает вид: Сv(r) = Сv + k1Т2/r + k2Т/r2 (5) где Сv – теплоёмкость крупнокристаллического материала; k1, k2 – некоторые коэффициенты. При увеличении размера частицы, когда r → ∞, второй и третий члены в уравнении (5) обращаются в нули. Соответственно исчезает разность между теплоёмкостями нано- и крупнокристаллического материала Сv(r) – Сv → 0. Согласно теоретическим оценкам, в области низких температур при Т → 0 теплоёмкость Сv(r) убывает быстрее, чем теплоёмкость крупнокристаллического материала Сv. Поэтому в области низких температур ∆С = Сv(r) – Сv < 0. Это означает, что существует некоторая температура Т0, ниже которой ∆С < 0. При Т > Т0 эта разность становится больше нуля (рис. 1). При высоких температурах теплоёмкость стремится к предельному значению, определённому законом Дюлонга-Пти: Сv → 3R. Для наночастиц серебра измерения теплоёмкости обнаружили квантовый размерный эффект: при Т < 1 К теплоёмкость наночастиц была
|