Другие подходы к построению эпюр внутренних силовых факторов
Помимо описанного выше, можно выделить еще два подхода к построению эпюр. В первом случае намечают не характерные сечения, а характерные точки, в качестве которых выделяют точки приложения сосредоточенных сил и моментов, а также точки начала и конца участков с распределенными нагрузками. Затем определяют величину внутреннего силового фактора слева и справа (бесконечно близко) от характерной точки. Другой возможный подход состоит в том, что балка разбивается на участки (с распределенными нагрузками и между точками приложения сил и моментов). Для каждого участка записывается выражение внутреннего силового фактора в общем виде как функции координаты z. Затем вычисляются значения на концах каждого участка. Очевидно, что при обоих подходах в конечном счете все сводится к вычислению внутренних силовых факторов в характерных сечениях, то есть соответствует описанному выше способу, но требует дополнительной, как правило неоправданной, работы. Правда, следует отметить, что запись общих выражений как функций от z удобна при программировании построения эпюр при помощи вычислительной техники. 1.13 Построение эпюр для плоских рам Плоской рамой называется стержневая система, элементы которой жестко или шарнирно соединены между собой, нагруженная в своей плоскости. Вертикально (или под наклоном) расположенные стержни рамы называются стойками, а горизонтальные - ригелями. Жесткость узлов устраняет возможность взаимного поворота скрепленных стержней, то есть в узловой точке углы между их осями остаются неизменными. Как и многие другие системы, рамы делятся на статически определимые и статически неопределимые (рис.10, б,в,д,е). Промежуточный шарнир снижает степень статической неопределимости рамы на величину m - 1, где m - число стержней, сходящихся в шарнире. Если m >2, то шарнир называется кратным (рис.10,д). Для определения степени статической неопределимости плоской рамы можно воспользоваться формулой: n = 3К-Ш, где n - степень статической неопределимости; К - число замкнутых контуров в предположении полного отсутствия шарниров; Ш- число шарниров в пересчете на одиночные. Основание (земля) рассматривается как стержень. Для рамы (рис.10,б) имеем: К=1; Ш=0; Для рамы (рис.10,д): К=3; Ш=3 В более простых случаях, когда отсутствуют замкнутые контуры и промежуточные шарниры, то есть когда используются комбинации тех же опор, что и в балках (жесткая заделка, шарнирно-подвижная и шарнирно-неподвижная опоры), для определения степени статической неопределимости используется “балочная” формула: , где r - число неизвестных реакций; S - число уравнений статики (для плоской рамы S=3). В данной работе ограничимся рассмотрением простейших статически определимых рам трех видов: 1) с жесткой заделкой; 2) на двух шарнирных опорах (неподвижной и подвижной); 3) на двух шарнирно неподвижных опорах с простым промежуточным шарниром. Рис. 10 Из шести внутренних силовых факторов в сечениях плоской рамы в общем случае возникают три: продольная сила ; поперечная сила ; изгибающий момент . Правила знаков. Для и сохраняются ранее принятые правила знаков. , если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, вызывает в данном сечении растяжение и - в противном случае. , если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, стремится повернуть данное сечение по часовой стрелке и - в противном случае. Ординаты эпюр и (как, впрочем и ) откладывают, как и обычно, перпендикулярно к оси элементов рамы. Иногда положительные ординаты и откладывают с внешней стороны рамы, а отрицательные – с внутренней, но рама часто имеет такую конфигурацию, при которой невозможно выделить внутреннюю и внешнюю стороны, поэтому в дальнейшем условимся: ординаты эпюр и откладываются в произвольную сторону, но обязательно указывается знак. Для изгибающих моментов специального правила знаков нет, а при вычислении момента в любом сечении знак принимается произвольно. Но результат вычислений всегда откладывается со стороны сжатого волокна элемента рамы. При этом знак на эпюре никогда не указывается. Такое условие полностью соответствует характеру построения эпюр в балках, где в соответствии с принятым для изгибающих моментов правилом знаков (см. 1.7) ординаты эпюр всегда оказывались расположенными со стороны сжатых волокон балки.
|