Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Состав и микроструктура сополимера. Статистический подход





 

Уравнения состава сополимера могут быть получены более строгим -статистическим методом без каких-либо исходных допущений, как это было сделано выше, которые предполагают равенство скоростей перекрестного роста. Кроме того, этот метод позволяет количественно охарактеризовать микроструктуру цепи случайных и статистических сополимеров. Один из вариантов такого описания предложен Алфреем и Голдфинером, которые рассчитали вероятности образования последовательностей одинаковых звеньев разной длины, т.е:

 

 

Очевидно, что вероятности образования тех или иных последовательностей звеньев в цепи равны произведению вероятностей соответствующих элементарных актов. Вероятность той или иной элементарной реакции равна ее скорости, деленной на сумму скоростей всех элементарных реакций с участием рассматриваемого типа активного центра. При бинарной сополимеризации возможны лишь две реакции роста с участием каждого из типов активных центров. Тогда вероятности реакций мономеров М1 и M2 с растущими цепями, оканчивающимися мономерным звеном М1, описываются следующими соотношениями:

 

 

Вероятности Р12 и аналогичная ей Р21, которая будет рассмотрена далее, называются переходными вероятностями, так как в результате соответствующих реакций меняется природа конечного звена растущей цепи. Обозначим вероятность образования последовательности, содержащей n звеньев М1, как Q1n. Тогда, исходя из сказанного выше:

 

 

Очевидно, что при большом числе последовательностей в макромолекулах сополимера величина Q\n равна доле данных последовательностей из мономера М1. Это следует, в частности, из того, что:

 

 

с учетом Р11 < 1. Относительное содержание мономера M1 в последовательностях по отношению к его общему количеству определяется следующим образом:

 

 

Важное значение имеет такая характеристика, как среднее содержание звеньев в последовательности или средняя длина последовательности. Она является средневзвешенной величиной

 

 

или с учетом (6.13)

 

 

Поскольку

 

 

окончательно получаем:

 

 

Аналогичные соотношения могут быть получены для последовательностей из мономера М2:

 

 

Полученные исходя из простой теории вероятности соотношения позволяют получить уравнение состава сополимера, а также количественно охарактеризовать его микроструктуру. Первое может быть сделано практически сразу через уравнение Голдфингера, которое получается делением (6.19) на (6.24):

 

 

Подставив в (6.25) выражения (6.11) и (6.21), окончательно имеем:

 

 

где Y = F1/F2 = Δ[M1]/Δ[M2], X = ƒ12 = [M1]/[M2]. Уравнения (6.5), (6.6) и (6.27) легко переходят друг в друга, т. е. идентичны.

Вернемся к микроструктуре сополимера. В табл. 6.1 приведены данные по относительному содержанию гомопоследовательностей, т. е. последовательностей, состоящих из мономеров одного типа для случайного и статистического сополимеров.

Из табл. 6.1 видно, что в статистическом сополимере по сравнению со случайным больше относительное содержание одиночных звеньев. Особенно это заметно для сополимеров, при образовании которых преобладает перекрестный рост вследствие r1 < 1, r2 < 1. Микроструктура сополимера количественно характеризуется его триадным составом, экспериментально определяемым методом ЯМР. Поскольку триады 112 и 211 или 221 и 122 методом ЯМР неразличимы, то обычно находится их суммарное содержание. Используя изложенный выше подход, для триад, центрированных Мi, можно показать:

 

 

при F111+F112 + F211+F212= 1.

Аналогичные выражения могут быть получены для триад, центрированных М2.

Исключая концентрации мономеров из уравнений (6.10), (6.11) и (6.25), можно получить соотношение:

 

 

из которого следует, что микроструктура сополимера заданного состава определяется произведением относительных активностей мономеров, а не их раздельными значениями.

Модель предконцевого звена. Согласно этой модели, необходимо учитывать восемь элементарных реакций роста:

 

 

Вероятности этих реакций описываются, как обычно, отношением скорости рассматриваемой реакции к сумме скоростей обеих возможных реакций роста:

 

 

Уравнение состава сополимера наиболее просто может быть получено статистическим путем. Согласно данной модели, среднее содержание звеньев М\ в последовательностях из этого мономера выражается рядом:

 

 

который легко преобразуется в сходящийся ряд:

 

 

Учитывая что:

 

имеем:

 

 

что приводит, после незначительных преобразований, к конечному результату:

 

 

Аналогичным образом приходим к выражению:

 

 

и далее к уравнению, связывающему состав сополимера с переходными вероятностями:

 

 

Это уравнение является аналогом уравнения Голдфингера, рассмотренного ранее.

Уравнение, связывающее состав сополимера с составом сомономерной смеси, получается путем подстановки в (6.48) выражений для вероятностей (6.34), (6.35), (6.38), (6.39):

 

 

Переходя к мольным долям для характеристики состава мономерной смеси, после незначительных преобразований, окончательно получаем:

 

 

При радикальной сополимеризации 1,2-дизамещенных этилена (М2) обычно r2 = 0. В таких случаях уравнение (6.50) трансформируется в более простое:

 

 

Микроструктура сополимера. Триадный состав сополимера, согласно модели предконцевого звена, описывается выражениями:

 

 







Дата добавления: 2015-08-17; просмотров: 681. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия