Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кривые состава сополимера и относительные активности мономеров





 

Около 90 % сополимеров, получаемых в промышленности, являются двухкомпонентными. Соответствующая сополимеризация называется двухкомпонентной или бинарной. Трехкомпонентные сополимеры распространены меньше, но очень важны в практическом отношении, соответствующая сополимеризация называется терполимеризацией, а сополимеры - терполимерами.

Количественные соотношения, описывающие состав и строение сополимера, являются общими для радикальной и ионной сополимеризации, т.е. могут быть получены безотносительно к природе активных центров на концах растущих цепей. Существует две наиболее общие модели сополимеризации, условно называемые моделями концевого и предконцевого звена. Считается, что первая модель применима к сополимеризации 80-90 % реальных систем. Эта модель, называемая моделью Майо-Льюиса, исходит из того, что реакционная способность активного центра на конце растущей цепи определяется лишь природой концевого звена. Исходя из этого постулата, необходимо рассматривать четыре элементарных реакции роста цепи с участием двух мономеров М1 и M2 и двух типов растущих цепей и , отличающихся природой концевого звена (значок * может означать радикал, катион или анион):

 

 

Уравнение, связывающее состав сополимера с составом мономерной смеси, может быть получено двумя методами - кинетическим и статистическим. В первом предполагается установление стационарного состояния, выражаемого условием равенства скоростей перекрестного роста:

 

 

Состав сополимера определяется отношением скоростей исчерпания мономеров:

 

 

Для того, чтобы избавиться от активных центров, используем уравнение (6.2):

 

 

Подставив (6.4) в (6.3) и умножив числитель и знаменатель полученного выражения на произведение k12·k21 окончательно получаем:

 

 

где r1 = k11/k12 и r2 = k22/k21 - ключевые константы теории сополимеризации, называемые относительными активностями мономеров. Они показывают, во сколько раз скорость взаимодействия активного центра растущей цепи со «своим» мономером больше по сравнению с «чужим». Другими словами, они характеризуют избирательность реакции роста при сополимеризации. Абсолютные концентрации мономеров в уравнении (6.5) могут быть заменены на относительные, т. е. мольные доли:

 

 

где F1 и F2 - мольные доли мономеров М1 и М2 в сополимере; ƒ1 и ƒ2 - в мономерной смеси.

Уравнения (6.5) и (6.6) описывают текущий состав сополимера, т.е. сополимера, образуемого в данный момент сополимеризации. Это уравнение обычно используют на начальном этапе сополимеризации для определения r1 и r2. В этом случае сополимеризацию проводят до 5-7% превращения, поэтому изменением относительных концентраций мономеров можно пренебречь. Тогда отношение [М1] / [М2] или [ƒ1] / [ƒ2] принимается равным исходному, т.е. задаваемому, а текущий состав сополимера принимается равным составу всего сополимера, образованного на начальной стадии сополимеризации, так называемому валовому составу, т. е.:

 

 

 

где [m1] и [m2] - концентрации звеньев М1 и M2 в сополимере, образованном на начальной стадии сополимеризации.

При определении значений относительных активностей мономеров уравнение (6.6) обычно записывается в виде явной зависимости п или п, например:

 

 

Согласно методу пересечений Майо-Льюиса, строится ряд прямых в координатах r2 – r1. При этом каждой паре значений ƒ1, ƒ2 - F1, F2 отвечает одна прямая. Область их пересечения включает точку, которая соответствует истинным значениям r1 и r2 размер области характеризует ошибку определения. По методу Файнемана-Росса данные по составу представляются в виде прямой в координатах . Отрезок отсекаемый по оси ординат, дает r2 угловой коэффициент прямой - r1. Применение метода наименьших квадратов позволяет, наряду с r1 и r2, объективно охарактеризовать погрешности их определения.

В настоящее время используются численные методы, являющиеся развитием так называемого метода «подобранной кривой».

Графическую зависимость состав сополимера - состав мономерной смеси принято называть кривой состава сополимера. Обычно она строится по данным сополимеризации до малых конверсии (5-7%). Ниже приведено уравнение кривой состава, которое легко может быть получено из уравнения состава:

 

 

Вид кривых состава, которые приведены на рис. 6.1, закономерно связан со значениями r1 и r2 и в определенной степени характеризует микроструктуру сополимера.

 

 

Кривая 1 относится к идеальной азеотропной сополимеризации, при которой состав образующегося сополимера равен составу мономерной смеси, а распределение мономерных звеньев в цепи сополимера определяется законом случая, при этом r1 = r2 = 1.

 

Таблица 6.1 Доля последовательностей различной длины из мономера 1 (Q1n) в эквимолярных сополимерах различных типов

 

n число звеньев М1 в последовательности          
Случайный сополимер r1 = r2 = 1 0,5 0,25 0,12 0,06 0,03
Случайный сополимер r1·r2 = 1 0,5 0,25 0,12 0,06 0,03
Статистический сополимер r1·r2 < 1, r1 < 1, r2 > 1 0,655 0,223 0,0746 0,025 0,0084
Статистический сополимер r1 < 1, r2 < 1 0,864 0,118 0,016 0,0022 0,0003
1 - акрилонитрил - бутилакрилат; r1 ≈ 1, r2 ≈ 1; 2-винилхлорид-этилен; r1 =3,6, r2 =0,24; 3 - акрилонитрил - метилметакрилат; r1 =0,22, r2 = 1,15; 4 - стирол - акрилонитрил; r1 = 0,394, r2 = 0,063

 

К идеальной относят также сополимеризацию, когда r1·r2 = 1, но при r1 > 1, r2 < 1 или r1 < 1, r2 > 1. В данной сополимеризации (кривые типа 2, 4) распределение мономерных звеньев в цепи сополимера также является случайным (табл. 6.1).

Кривые состава типа 3, 7 и в меньшей степени 6, а также 2 и 4 при r1·r2 < 1, характерны для сополимеризации, в результате которой образуются так называемые статистические сополимеры. В данном случае распределение звеньев в цепи также не является строго регламентированным, но определенные тенденции, например чередование звеньев, могут быть выражены достаточно ярко. В целом распределение звеньев случайных и статистических сополимеров, хотя и является хаотическим, но отличается заметно (см. табл. 6.1).

Преимущественное чередование звеньев характерно для сополимеризации с S-образными кривыми состава 3 с азеотропной точкой, в которой состав сополимера равен составу мономерной смеси. В этом случае r1 < 1, r2 < 1. Предельным случаем является регулярное чередование звеньев, когда r1 = 0, r2 = 0, а кривая состава 5 является прямой линией, параллельной оси абсцисс, делящей ось ординат пополам, что отвечает единственно возможному составу сополимера 1:1. S-образные кривые состава, а также кривая 5 характерны для радикальной сополимеризации и обусловлены проявлением полярного фактора реакционной способности и донорно-акцепторным взаимодействием.

Кривые 6 и 7 относятся к сополимеризации мономеров, из которых один не способен к гомополимеризации вследствие стерических причин. К таким мономерам относятся 1,2-дизамещенные этилена, в частности малеиновый ангидрид.

При сополимеризации практически всегда r1· r2 ≤ 1 и почти никогда r1 > 1, r2 > 1. Последнее означало бы образование длинных блоков последовательностей звеньев М1 и М2, а случай r1 >> 1, r2 >> 1 означал бы раздельную гомополимеризацию мономеров. Известны лишь несколько подобных исключений, природа которых не всегда понятна.

 







Дата добавления: 2015-08-17; просмотров: 1220. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия