Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Относительные показатели вариации. Их значение в статистическом анализе.





Относительные показатели вариации используются для сравнения степени вариации:

· Одного признака в разных совокупностях;

· Разных признаков в одной совокупности;

1. Коэффициент оссиляции

2. Отнсительное линейное отклонение

3. Коэффициент вариации - совокупность неоднородна.

При анализе рядов распределения проводится оценка симметричности и крутизны распределения.

Симметричное распределение

Распределение является симметричным, если частоты двух любых вариант, равноотстоящих в обе стороны от центра распределения, равны между собой.

Симметричное распределение: =Ме = Мо.

Правосторонняя ассиметрия: >Ме > Мо.

Левосторонняя ассиметрия: <Ме < Мо.

Чем больше разница между средней арифметической и модой (медианой), тем больше асимметрия ряда.

Степень ассиметрии:

Моментный коэффициент асимметрии

, где

Коэффициент асимметрии изменяется от –3 до +3. Если As>;0, то правосторонняя ассиметрия. При этом выполняется соотношение >Ме > Мо.

Если As<;0, то асимметрия левосторонняя. При этом <Ме < Мо.

На практике асимметрия считается значительной, если коэффициент асимметрии превышает по модулю 0,25. Если превышает по модулю 0,5, то ассиметрия значительная.

Крутизна распределения:

Эксцесс представляет собой вершины распределения вверх или вниз от вершины нормального распределения. Коэффициент эксцесса рассчитывается по формуле

,

где - центральный момент четвертого порядка, или . При нормальном распределении =3, эксцесс нормального распределения равен 0. Обычно, если эксцесс положителен, то распределение островершинное, если отрицательный – то плосковершинное.

 

16. Виды дисперсии. Правило сложения дисперсий. Свойства дисперсии. + 17. Использование метода группировок для изучения взаимосвязи между социально-экономическими явлениями. Эмпирическое корреляционное отношение.

Виды дисперсий:

Эмпирический коэффициент детерминации показывает, какая доля в общей дисперсии показателя приходится на дисперсию, возникающую в результате вариации группировочного признака.

Ход вычисления:

1. Определяется общее среднее значение показателя по формуле средней арифметической, либо простой, либо взвешенной.

2. Вычисляется общая дисперсия: либо . Она характеризует вариацию значений признака за счет всех факторов, как положенного в основу группировки, так и не учтенных, но действующих.

3. Рассчитываются групповые средние.

4. Определяются внутригрупповые дисперсии: . Они характеризуют вариацию значений исследуемого признака внутри групп независимо от того, какое значение принимает группировочный признак.

5. Вычисляется средняя из внутригрупповых дисперсий:

6. Межгрупповая дисперсия: . Межгрупповая дисперсия характеризует вариацию значений исследуемого признака за счет действия на него только группировочного признака.

7. Правило сложения дисперсий: . Проверяется точность вычислений, или найти по двум компонетам неизвестную.

8. Эмпирический коэффициент детерминации:

9. Эмпирическое корреляционное отношение: . Изменяется от о до 1. 0 – связи нет. 1- наличие функциональной зависимости между признаками, при которой значения исследуемого показателя полностью полностью определяются значениями группировочного признака. Чем ближе к единице, тем теснее связь.

Свойства дисперсии:

o Если xi=c, где с – постоянная величина, то дисперсия будет равна нулю;

o Если из всех значений признака вычесть постоянную величину с, то дисперсия от этого не изменится:

o Если все индивидуальные значения признака уменьшить в d раз, то дисперсия уменьшится в d2 раз:

На приведенных свойствах дисперсии основан один из методов ее расчета – способ моментов. Согласно ему дисперсию можно вычислить по следующей формуле (применяется только в случаях с равными интервалами!)

Где d – величина интервала, c- значение середины интервала, находящегося в центре ряда (если количество интервалов нечетное) или середину интервала с наибольшей частотой также из центра ряда (при четном количестве интервалов в центре ряда будут находится два интервала).

 

 







Дата добавления: 2015-08-17; просмотров: 568. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия