Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Каноническое уравнение гиперболы.




Определение 1. Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек той же плоскости, называемых фокусами,есть величина постоянная, меньшая, чем расстояние между фокусами.

Составим уравнение гиперболы с фокусами в данных точках F1 и F2. Для этого выберем прямоугольную систему координат так, чтобы ось Ох проходила через фокусы, а начало координат делило отрезок F1F2 пополам (рис. 1).

Обозначив F1F2 = 2с, получим F1 (с; 0) и F2 (–с; 0). Пусть М (х; у) – произвольная точка гиперболы.

Рис. 1

 

Определение 2. Расстояния r1 = F1M и r2 = F2M называются фокальными радиусамиточки М.

Согласно определению гиперболы

| r1—r2 | =2a, (1)

где 2а – величина постоянная и < , т.е. а < с. Подставив

и

вравенство (1), получим уравнение гиперболы

. (2)

Уравнение (2) можно привести к более простому виду; для этого преобразуем его следующим образом:

,

,

,

,

,

т.е.

.

Так как а < с, то с2 – а2 > 0. Положим

с2 – а2 = b2 ;(3)

тогда последнее равенство принимает вид

b2x2 – a2y2 = a2b2 ,

или

(4)


Так как координаты х и у любой точки М гиперболы удовлетворяют уравнению (2), то они удовлетворяют и уравнению (4).

Как и в случае эллипса, можно показать, что спра­ведливо и обратное: если координаты точки М (х; у) удовлетворяют уравнению (4), то она принадлежит гиперболе.

Определение 3. Уравнение (4) называется каноническим уравнением гиперболы.







Дата добавления: 2015-08-27; просмотров: 492. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.001 сек.) русская версия | украинская версия