Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Каноническое уравнение гиперболы.





Определение 1. Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек той же плоскости, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.

Составим уравнение гиперболы с фокусами в данных точках F1 и F2. Для этого выберем прямоугольную систему координат так, чтобы ось Ох проходила через фокусы, а начало координат делило отрезок F1F2 пополам (рис. 1).

Обозначив F1F2 = 2с, получим F1 (с; 0) и F2 (–с; 0). Пусть М (х; у) – произвольная точка гиперболы.

Рис. 1

 

Определение 2. Расстояния r1 = F1M и r2 = F2M называются фокальными радиусами точки М.

Согласно определению гиперболы

| r1—r2 | =2a , (1)

где 2а – величина постоянная и < , т.е. а < с. Подставив

и

вравенство (1), получим уравнение гиперболы

. (2)

Уравнение (2) можно привести к более простому виду; для этого преобразуем его следующим образом:

,

,

,

,

,

т.е.

.

Так как а < с, то с2 – а2 > 0. Положим

с2 – а2 = b2 ;(3)

тогда последнее равенство принимает вид

b2x2 – a2y2 = a2b2,

или

(4)


Так как координаты х и у любой точки М гиперболы удовлетворяют уравнению (2), то они удовлетворяют и уравнению (4).

Как и в случае эллипса, можно показать, что спра­ведливо и обратное: если координаты точки М (х; у) удовлетворяют уравнению (4), то она принадлежит гиперболе.

Определение 3. Уравнение (4) называется каноническим уравнением гиперболы.







Дата добавления: 2015-08-27; просмотров: 803. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия