Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Каноническое уравнение эллипса.





Определение 1. Э лл ипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек той же плоскости, называемых фокусами, есть величина постоянная, бóльшая, чем расстояние между фокусами.

 

 

Рис. 1

 

Составим уравнение эллипса с фокусами в данных точках F1 и F2. Для этого выберем прямоугольную систему координат так, чтобы ось Ох проходила через фокусы, а начало координат делило отрезок F1F2 пополам (рис.1).

Обозначив F1F2=2c, получим F1 (c; 0) и F2 (–с; 0). Пусть М (х; у) – произвольная точка эллипса.

Определение 2. Расстояния r1=F1M и r2=F2M называются фокальными радиусами точки М.

Положим

; (1)

тогда согласно определению эллипса – величина постоянная, причем 2а>2с, т.е. а>с.

По формуле расстояния между двумя точками находим

и . (2)

Подставив найденные значения r1 и r2 в равенство (1), получим уравнение эллипса

(3)

Преобразуем уравнение (3) следующим образом:

т. е.

Так как а > с, то а2–с2>0. Положим

(4)

 

тогда последнее уравнение примет вид

или

(5)

 

 

Так как координаты х и у любой точки М эллипса удовлетворяют уравнению (3), то они удовлетворяют и уравнению (5).

Покажем, что справедливо и обратное: если координаты точки М(х; у) удовлетворяют уравнению (5), то она принадлежит эллипсу.

Пусть М (х; у) – произвольная точка, координаты которой удовлетворяют уравнению (5). Так как из (5) следует

(6)

то откуда

Подставив (6) в соотношения (2) и проведя необходимые упрощения, получим

и

Но так как а > с > 0 и , то

и ,

откуда

и (7)

и, следовательно, , т. е., точка М (х; у) действительно принадлежит эллипсу.

Определение 3. Уравнение (5) называется каноническим уравнением эллипса.







Дата добавления: 2015-08-27; просмотров: 729. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия