Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ





Задача 1. Преобразовать в СДНФ булеву функцию, заданную формулой

а) f=( ® у)(zÅ );

б) f= ;

в) f=( ®z)V( ).

Задача 2. По таблице истинности получить СДНФ булевой функции

а) f=(x ® )(z® );

б) f= .

 

§ 2. Совершенная конъюнктивная нормальная форма (СКНФ)

Существует и другая нормальная форма (конъюнктивная).

Выражение (отрицание на любых местах) называется элементарной дизъюнкцией (ЭД).

Конъюнкция нескольких ЭД называется конъюнктивной нормальной формой (КНФ).

Если к тому же все ЭД правильны и полны, то КНФ называется совершенной (СКНФ).

Рассмотрим способ получения СКНФ с помощью СДНФ.

Пусть дана булева функция f(x1…xn). Двойственной булевой функцией называется булева функция f*, заданная формулой

f*(x1…xn)=

Заметим, что (f*)*=f.

Например, для f=x V y двойственной является f* = = xy.

Таким образом, двойственной к дизъюнкции является конъюнкция и наоборот.

Теорема (закон двойственности). Двойственная к композиции булевых функций есть соответствующая композиция двойственных булевых функций (композиция булевых функций – сложная функция, составленная из нескольких булевых функций).

Следствие 1. Если в формуле присутствует только дизъюнкция, конъюнкция и отрицания, то для получения достаточно заменить дизъюнкцию конъюнкцией и наоборот.

Следствие 2. Двойственной к СДНФ является СКНФ.

Из следствия 2 вытекает практический алгоритм преобразования данной формулы в СКНФ, используя двойственность:

1) найти f*;

2) преобразовать f* в СДНФ;

3) еще раз взять двойственную. (f*)*=f= СДНФ*=СКНФ.

Аналогично тому, как с помощью таблицы истинности была получена СДНФ, можно получить СКНФ. Для этого в последнем столбце таблицы выбираем нули, а в исходных наборах 0 заменим переменной, 1 – отрицанием переменной.

 







Дата добавления: 2015-08-17; просмотров: 748. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия