Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ.





 

Задача 1. Задан граф.

v 7
v 5
v 6
v 4
v 3
v 2
v 1
v 8

 

 


Найти кратчайший путь из вершины v1 в вершину v8.

Решение. Используя алгоритм задачи о нахождении кратчайшего пути из v1 в v8 в смысле наименьшего количества ребер, получим:

1. Вершине v1 припишем индекс 0.

2. Всем вершинам, смежным с v1 (v2 и v3), припишем индекс 1.

3. Всем вершинам, смежным v2 и v3 и не имеющим индекса (v5,v4,v6,v7), припишем индекс 2.

4. Всем вершинам, смежным с вершинами (v4,v5,v6,v7) и не имеющим индекса v8, припишем индекс 3.

Таким образом, вершина v8 получила индекс 3, а значит, длина кратчайшего пути из v1 в v8 равна 3. Построим этот путь или пути, если их несколько.

5. Среди вершин, смежных с v8, найдем вершины с индексом 3-1=2. Таких вершин три: v6,v7, v4.

6. Среди вершин, смежных с v4,v6,v7, найдем вершины с индексом 1. Таких вершин две: v2 и v3.

7. Среди вершин, смежных с v2 и v3, найдем вершины с индексом 0. Такая вершина одна и это v1.

Таким образом, было получено три кратчайших пути длины 3. Перечислим их: 1) v1,v2,v6,v8; 2) v1,v3,v7,v8; 3) v1,v3,v4,v8.

 

 

v 7 (2)
v 5 (2)
v 6 (2)
v 4 (2)
v 3 (1)
v 2 (1)
v 1 (0)
v 8 (3)

 


Задача 2. Задан орграф.

 
 
 
 
 
 
 
 
 
 
 
 
v 5
v 6
v 7
v 3
v 4
v 1
v 2

 


Найти кратчайший путь из вершины v1 в вершину v6 в смысле суммы весов дуг.

Решение. Используя алгоритм решения задачи о нахождении кратчайшего пути в смысле суммы весов дуг, получим:

1. Вершине v1 присвоим индекс 0, а всем остальным +¥.

2. Переберем вершины орграфа, смежные с вершиной v1 и имеющие дугу из v1 в эту же вершину. Вершине v4 присвоим индекс 0+2=2, так как 2<+¥. Вершине v3 присвоим индекс min {0+1, 2+2}=1, так как 1<+¥. Вершине v2 присвоим индекс min{0+1, 2+5}=2, так как 1<+¥.

3. Аналогично проведем рассуждения для вершин орграфа, смежных с вершинами v2,v3,v4. Так как в вершину v5 ведет две дуги, то присвоим ей индекс min{1+4, 2+3}=5<+¥. Вершине v7 присвоим индекс min{2+5, 1+3}=4<+¥.

4. Вершине v6 присвоим индекс min{5+2, 2+6, 4+1}=4+1=5. Таким образом, кратчайший путь из вершины v1 в v6 в смысле суммы весов дуг равен 5.

Построим этот путь.

5. Среди вершин, смежных с вершиной v6, найдем вершину С, для которой выполняется равенство . Такой вершиной является v7, так как или 4+1=5.

6. Среди вершин, смежных с вершиной v7, найдем вершину Д, для которой выполняется равенство . Такой вершиной является v3, так как или 1+3.

7. Среди вершин, смежных с вершиной v3, найдем такую вершину Е, для которой выполняется равенство . Такая вершина одна и это v1.

Таким образом, мы вернулись из вершины v6 в вершину v1.

Запишем кратчайший путь из v1 в v6: v1 v3 v7 v6.

v 5 (5)
v 2 (1)
 
 
 
 
 
 
 
 
 
 
 
v 6
v 7(4)
v 3 (1)
v 4(2)
v 1 (0)

 


 







Дата добавления: 2015-08-17; просмотров: 430. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия