Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ. Задача 1. Для графа G перечислить все вершины и ребра, указать степени всех вершин





Задача 1. Для графа G перечислить все вершины и ребра, указать степени всех вершин. Какие из них являются висячими, а какие изолированными?

v 5
v 6
v 4
v 3
v 2
v 1
x 6
x 5
x 3
x 4
x 2
x 1
3 bnJldi54bWxMj81OwzAQhO9IvIO1SFwq6tRSkxCyqVAlLnAACg/gxEsS4Z8Qu6n79rgnOI5mNPNN vYtGs4VmPzqLsFlnwMh2To22R/j8eLorgfkgrZLaWUI4k4ddc31Vy0q5k32n5RB6lkqsryTCEMJU ce67gYz0azeRTd6Xm40MSc49V7M8pXKjuciynBs52rQwyIn2A3Xfh6NBeH59W51FzFc/xbbdx6XU 8cVrxNub+PgALFAMf2G44Cd0aBJT645WeaYRtkWekghCFMAuvijStxbhflMCb2r+/0DzCwAA//8D AFBLAQItABQABgAIAAAAIQC2gziS/gAAAOEBAAATAAAAAAAAAAAAAAAAAAAAAABbQ29udGVudF9U eXBlc10ueG1sUEsBAi0AFAAGAAgAAAAhADj9If/WAAAAlAEAAAsAAAAAAAAAAAAAAAAALwEAAF9y ZWxzLy5yZWxzUEsBAi0AFAAGAAgAAAAhAAFOUeT1AQAA6wMAAA4AAAAAAAAAAAAAAAAALgIAAGRy cy9lMm9Eb2MueG1sUEsBAi0AFAAGAAgAAAAhAK8SuWHdAAAACAEAAA8AAAAAAAAAAAAAAAAATwQA AGRycy9kb3ducmV2LnhtbFBLBQYAAAAABAAEAPMAAABZBQAAAAA= " strokecolor="black [3040]"/>

 


Решение. v 1, v 2, v 3, v 4, v 5, v 6, v 7 – вершины графа G; ребра графа G – х 1, х 2, х 3, х 4, х 5. Вершина v 1 имеет степень 1, так как ей инцидентно только одно ребро х 1. Вершина v 2 имеет степень 4, так как ей инцидентны ребра х 1, х 2, х 4, х 5. Вершина v 3 имеет степень 2, так как ей инцидентны два ребра х 2 и х 3 и т.д. Вершина v 7 имеет степень 0, так как нет ребер ей инцидентных. Таким образом, вершины v 1 и v 6 являются висячими, так как их степень равна 1. Вершина v 7 является изолированной, так как она имеет степень 0.

Задача 2. Для графа G построить матрицу смежности А(G).

v 5
v 4
v 3
v 2
v 1
x 6
x 5
x 3
x 4
x 2
x 1

 


Решение. Так как у графа 5 вершин, то размер матрицы А(G) будет 5х5. Так как вершины v 1и v 2 связаны ребром х 1, то а 12=1, так как вершины v 1 и v 3 связаны ребром х 2, то а 13=1, и т.д. В результате получаем матрицу смежности А(G):

 

Заметим, что матрица смежности А(G) обладает свойством симметрии.

Задача 3. Пусть дан орграф D. Записать для графа D матрицу смежности А(D) и матрицу инцидентности В(D).

x 6
x 7
v 6
v 2
v 5
v 4
v 3
v 1
x 5
x 3
x 4
x 2
x 1

 


Решение. Орграф D содержит 6 вершин и 7 дуг, поэтому размер матрицы А(D) будет 6х6, а матрица В(D) – 6х7. Так как орграф D не содержит дуги из v 1 в v 1 (петли), то а 11=0. Так как орграф D не содержит дуги из v 1 в v 2, то а 12=0. Так как из вершины v 1 в вершину v 3 существует дуга х 2, то а 13=1 и т.д.

В результате получаем матрицу инцидентности А(D):

Матрица смежности А(D) орграфа D не обладает свойством симметрии.

Составим матрицу инцидентности В(D) орграфа D. Элемент b 11=-1, так как в вершине v 1 заканчивается дуга х 1;

элемент b 12=1, так как в вершине v 1 заканчивается дуга х 2 и т.д. В результате получаем матрицу инцидентности В(D):

Задача 4. Пусть дан граф G. Определить количество путей длины 3 из вершины v 2 в вершину v 5.

x 78
v 2
x 6
x 7
v 5
v 4
v 3
v 1
x 5
x 3
x 4
x 2
x 1

 

 


Решение. Составим матрицу смежности графа G. Так как вершин у графа G равно 5, то матрица смежности имеет размерность 5х5.

Так как необходимо определить пути длины 3, то матрицу смежности возведем в 3-ю степень.

Так как элемент а 25=1, то из вершины v 2 в вершину v 5 существует один путь длины 3, а именно х 2 х 4 х 6.

 







Дата добавления: 2015-08-17; просмотров: 782. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия