Основные положения теории пограничного слоя
Поскольку основным предметом нашего рассмотрения должно явиться взаимодействие свободно или вынужденного движущегося потока жидкости или газа с поверхностью твердого тела необходимо вспомнить основные положения теории пограничного слоя [7]. Теплоотдача твердому телу зависит от распределения температуры в потоке жидкости или газа. Температурное поле в свою очередь зависит от гидродинамической обстановки в потоке жидкости, которая сложилась к заданному моменту времени. Следовательно, для решения тепловой задачи вначале необходимо найти распределения скоростей, т. е. решить гидродинамическую задачу. Если считать жидкость несжимаемой, (r = const), а теплоемкость постоянной (с = const), то в математическую формулировку гидродинамической задачи войдет уравнение неразрывности: , (5.1) система уравнений движения Навье-Стокса , (5.2) где – полная или субстанциональная производная (оценивает действительное ускорение, которое испытывает частица, проходя вдоль линии тока в поле скорости); X, Y, Z – проекции на оси координат внешних сил, действующих на элемент объема жидкости; Р – давление внутри жидкости; m – коэффициент динамической вязкости; v – скорость элемента объема жидкости. и уравнения, описывающие граничные условия 1, 2, 3 или 4-го рода. Главная трудность возникает при решении уравнений Навье-Стокса, которые представляют собой нелинейные дифференциальные уравнения в частных производных второго порядка. Кроме того, три уравнениясодержат четыре неизвестных – vх, vу, vz,P. Только при больших упрощениях, эти уравнения удалось решить. Например, при натекании жидкости из бесконечности на бесконечную стенку. Известны приближенные решения уравнений Навье-Стокса для так называемого ползущего движения, первого предельного случая, очень малой скорости. Но наибольший интерес представляет второй предельный случай – очень малой вязкости жидкости при большой скорости. Метод упрощения дифференциальных уравнений Навье-Стокса для второго предельного случая был разработан Прандтлем. В 1904 г он представил по этому поводу доклад Международному конгрессу математиков в Гейдельберге. Сущность метода поясним на примере стационарного плоскопараллельного потока жидкости, омывающего пластину. Поток жидкости, омывающий тело, мысленно разбивают на две области: пограничный слой 1 и внешний поток 2. Гидродинамическим (динамическим) пограничным слоем называют область течения вязкой теплопроводной жидкости, характеризующейся малой толщиной d(х) по сравнению с продольными размерами области (например, длиной пластины ℓ, d(х) << ℓ;) и большим поперечным градиентом, скорости .Скорость жидкости vx у стенки равна нулю (эффект прилипания). Переход vx к V¥ осуществляется асимптотически. Однако практически величина vx достигает значения v, близкого к V¥ (v1 = 0,99 V¥) в очень тонком слое, толщина которого обычно принимается за толщину пограничного слоя d(х). То есть, для гидродинамического пограничного слоя удается значительно упростить уравнения Навье-Стокса. Полученные после упрощения уравнения называют уравнениями динамического пограничного слоя. Для внешнего потока уравнения Навье-Стокса так же упрощаются (последнее слагаемое с m пропадает, т. к. силами внутреннего трения в жидкости пренебрегают). Итак, исследуемый поток разбивается на две части и задача математического описания течения жидкости при этом упрощается. Наряду с динамическим пограничным слоем существует также и тепловой пограничный слой. Он характеризуется большим поперечным градиентом температуры, под действием которого осуществляется поперечный перенос теплоты. Распределение температур внутри движущейся несжимаемой жидкости в случае нестационарного трехмерного температурного поля описывается дифференциальным уравнением . (5.3) Для теплового пограничного слоя удается упростить это уравнение. Полученное после упрощения уравнение называют уравнением энергии теплового пограничного слоя. Можно получить точное аналитическое решение (распределение температуры в пограничном слое) этого уравнения, если из гидродинамической задачи определено распределение скорости пограничного слоя. Точные решения уравнений динамического и теплового пограничного слоев трудоемки, а в ряде случаев и не возможны, потому в инженерных расчетах часто пользуются приближенными методами решения указанных уравнений (метод теории подобия – см. п. 3.5.4 – 3.5.8). Таким образом, сущность теории пограничного слоя состоит в упрощении уравнений, описывающих процесс теплообмена между твердым телом и омывающей его жидкостью на основании применения их к малой пространственной области – пограничному слою и отыскания методов решения полученных после упрощения уравнений. Для решения задачи теплоотдачи от жидкости или газа к твердому телу рассмотренные уравнения осталось дополнить граничными условиями. Чаще всего используют граничные условия третьего рода (см. п 3.3.4): , (5.4) где l0 – коэффициент теплопроводности среды; у – ось системы координат с началом на поверхности теплообмена, направленная внутрь жидкости и твердого тела; tS, t0 – собственно температура поверхности и среды; a – коэффициент теплоотдачи.
|