Системе резания
Анализ теплофизической обстановки начинают с рассмотрения теплообмена в зоне резания при работе простым режущим клином, поскольку инструмент любой формы и сложности состоит из системы простых режущих клиньев. Современное представление о процессе формоизменения материала может дать схема, приведенная на рис. 7.8. В зоне 3 материал заготовки подвергается пластическому деформированию, которое возникает не только в этой зоне, но и в тонком слое материала заготовки 1, расположенном под задней поверхностью режущего клина 5. Зона 3 окружена областью 2, в которой возникают упругопластические и упругие деформации. Стружка 4 перемещается по передней поверхности резца. В прирезцовом слое 6 ее материал испытывает вторичное деформирование вследствие процессов, происходящих на площадке контакта с инструментом. На участке, расположенном вблизи режущей кромки, может возникать нарост 7, как результат застойных явлений в материале заготовки в этой части зоны резания. Наличие или отсутствие нароста, его размеры, твердость и устойчивость зависят от свойств материала заготовки и инструмента, геометрии режущего клина, режима резания, наличия смазочно- охлаждающей жидкости. От этих же факторов зависит коэффициент укорочения стружки k, т. е. отношение между толщиной а1 стружки и толщиной а срезаемого слоя металла. Коэффициент укорочения определяет скорость перемещения стружки v1 =v/k. Как правило, k>1, следовательно, Скорость движения стружки v1 меньше скорости резания v. Стружка имеет суставчатую форму, т. е. состоит из отдельных элементов, сильнее или слабее связанных между собой. При высоких скоростях резания и обработке пластичных материалов толщина этих элементов невелика, они тесно связаны друг с другом, стружка имеет вид сплошной ленты. Такую стружку называют сливной. При схематизации теплообмена ее представляют в виде бесконечного стержня. Общую мощность тепловыделения при резании полагают эквивалентной механической работе деформирования материала в зонах 2, 3 и 6 и работе сил трения на контактных поверхностях инструмента, т. е.: , (7.19) где PZ – главная составляющая силы резания, Н; v – скорость резания, м/с. В свою очередь: , (7.20) где WД – мощность тепловыделения источника, возникающего как результат перехода в теплоту работы деформирования, Вт; W1Т – мощность тепловыделения источника, возникающего как результат перехода в теплоту работы сил трения на передней поверхности резца, Вт; W2Т – мощность тепловыделения источника, возникающего как результат перехода в теплоту работы сил трения на задней поверхности резца, Вт. Все источники тепловыделения при резании являются трехмерными, но часто при теплофизическом анализе их полагают двумерными (плоскими). Учет трехмерности источников приводит к усложнению математического аппарата, используемого при теплофизическом анализе процесса резания, которое пока не окупается повышением точности расчетов. При высоких скоростях обработки форма источников тепловыделения стремится к двумерным фигурам. Например, конфигурация зоны деформирования 3 (рис. 7.8) стремится к двумерной поверхности, мало отличающейся от плоскости, которую называют плоскостью сдвига. На основании изложенных соображений в дальнейшем источники тепловыделения при резании будем считать двумерными, распределенными по тому или иному участку поверхности резца, стружки или заготовки. В соответствии с законами механики мощности теплообразующих источников рассчитывают по формулам: , (7.21) где F1 – сила трения на передней контактной поверхности инструмента, Н; F2 – сила трения на задней контактной поверхности инструмента, Н. Главную составляющую силы резания PZ, находят по формуле [5]: , (7.22) где Срz, xрz, yрz, и nрz – коэффициенты, зависящие от условий обработки; t – глубина резания, мм; S – подача, мм/об; v – скорость резания, м/мин; Kp – поправочный коэффициент. Силу трения на передней контактной поверхности инструментаF1 определяют по формуле: , (7.23) где w – угол действия. Угол действия – это угол между действительным направлением силы резания и ее составляющей PZ. Угол действия находят по формуле [1]: , (7.24) где PY – составляющая силы резания, Н. Составляющую PY силы резания определяют по формуле: , (7.25) где Ср yxрyyрy и nрy – коэффициенты, зависящие от условий обработки. Силу трения по задней контактной поверхности инструмента F2 опреде- ляют как силу PZ при толщине срезаемого слоя, стремящейся к нулю[3]. Теплота W, распространяясь по технологической системе, расходуется на нагревание стружки (WС), инструмента (WИ), заготовки (WЗ) и рассеивается в окружающую среду (WО). Поэтому: . (7.26) Мощности WД, W1T и W2T при резании известны, а мощности WС, WИ, WЗ и WО могут быть рассчитаны только с помощью теплофизического анализа.
|