Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример расчета





 

Определить температуру резания при точении заготовки из стали 40ХН резцом с пластинкой из твердого сплава Т15К6. Режим резания: подача S = 0,8×10-3 м/об, глубина резания t = 5×10-3 м, скорость резания

v = 1,3 м/с. Силы резания PZ = 8400 Н, PY = 3600 Н. Геометрические параметры инструмента: передний угол g = 12°, задний угол a = 10 o, угол в плане j = 45°. Коэффициент теплопроводности стали 40ХН , твердого сплава Т15К6 . Коэффициент температуропроводности стали 40ХН a1 = 0,067×10-4 м2, твердого сплава a2 = 0,1×10-4 м2.

Принимаем коэффициент усадки стружки k = 1,8, длину контакта

2 = 0,1×10-3 м.

Решение.

Определим необходимые для расчета исходные данные:

o ширина стружки м;

o толщина среза м;

o длина контакта инструмента со стружкой

м;

  • угол действия ;
  • сила трения на передней контактной поверхности резца

Н;

  • сила трения по задней контактной поверхности резца

F2 = PZ × (t = 0,1 мм) = 64 Н.

1) Рассчитаем мощности источников тепловыделения.

Скорость схода стружки м/с

Мощность тепловыделения от силы трения на передней поверхности резца W1T = F1 × v1 = 5187 × 0,72 = 3746 Вт.

Мощность тепловыделения от силы трения на задней поверхности резца W2T = F2 × v = 64 × 1,3 = 83,2 Вт.

Мощность тепловыделения при деформировании металла

WД = (Рz - F2) × v – F1 × v1 = (8400 – 64) × 1,3 -5187 × 0,72 = 6624 Вт.

2) Рассчитаем значение угла сдвига:

.

3) Рассчитаем наибольшие плотности теплообразующих потоков:

;

;

Вт/м2;

Вт/м2;

Вт/м2.

4) Составим код источника q3 длиной м, который движется по заготовке со скоростью v: . Пользуясь алгоритмом (рис. 7.1), рассчитаем коэффициент A1:

.

Критерий Пекле ;

;

AР = 0,67; AД = 1; AК = 1;

;

.

По рис. 7.2 при u = 94,7 находим A0 = 0,9; AT = 2;

.

5) Составим код источника qd-q3, который движется внутри стружки (стержня) со скоростью v1: . Пользуясь алгоритмом (рис. 7.1), рассчитаем коэффициент A2:

.

Критерий Пекле .

;

Aд = 1; Aу = 1; Aт = 1;

.

6) Рассчитаем плотность потока:

Вт/м2.

7) Составим код источника q. Пользуясь алгоритмом (рис. 7.5), рассчитаем коэффициент А3. При составлении кода имеем ввиду, что в следствие адиабатичности боковых сторон стружки последнюю можно представить в виде неограниченной пластины толщиной t1 = k × a = 1,8 ´

´ 5,7×10-4 = 1,02×10-3 м, а источник q в виде двумерного полосового, ограниченного только по длине ;1. Коэффициент c = 0,1. ;

.

Критерий Пекле ;

;

Ap = 0,51; AД = 1; АК = 1;

;

.

По рис. 7.2 при u = 45 находим А0 = 0,89; Ат=2;

=

8) Составим код стока q1. Пользуясь алгоритмом (рис. 7.1), рассчитаем коэффициент А4. При составлении кода имеем ввиду, что вследствие адиабатичности боковых сторон стружки, последнюю можно представить в виде неограниченной пластины толщиной t1 = k ×a = 1,8 × 5,7×10-4 = 1,02×10-3 м, а сток q1 в виде двумерного полосового, ограниченного только по длине ;1. Коэффициент c = 0,1. ;

.

Критерий Пекле ;

;

Ар = 0,67; Ад = 1; Ак = 1;

;

.

По рис. 7.2 при u = 45 находим А0 = 0,89, Ат = 2;

9) Составим код источника q и по алгоритму (рис. 7.1), рассчитаем коэффициент А5. :

.

Критерий Пекле ;

;

Аp = 0,36; Ад = 1; АК = 1;

;

.

По рис. 7.2 при u = 311 находим А0 = 0,92, Ат = 2;

10) Составим код стока q2 и по алгоритму (рис. 7.1), рассчитаем коэффициент A7. :

.

Критерий Пекле ;

;

Ap = 0,67; Aд = 1; Aк = 1;

;

.

По рис. 7.2 при u = 311 находим A0, Ат = 2;

11) Рассчитаем передаточную функцию, характеризующую влияние источника q3 на температуру площадки l2:

j1 = 1;

;

;

.

12) Рассчитываем значение коэффициента A6:

A6 = A1 × Bср. = 1,5×10-6 × 1,212 = 1,82×10-6.

13) Напишем выражение для температур θ1 и θ2 со стороны заготовки:

θ1 = A3 × q1T + (1+c) × A2 × (qd + q3) – A4 × q1 = 2,38×10-6 × 2,99×108 + (1 + 0,1) ´;

´ x × 2,74×10-7 × (8,67×108 – 1,3×108) – 3,13×10-6 × q1 = 933,752 – 3,13×10-6 × q1;

θ2 = A5 × q2T + (1+c) × A6 × q3 – A7 × q2 = 2,5×10-7 × 2,34×108 + (1 + 0,1) ´;

´ 1,82×10-6 × 1,3×108 – 4,66×10-7 × q2 = 318,76 – 4,66×10-7 × q2.

14) Составим код источника плотностью q1 на передней поверхности резца и, пользуясь алгоритмом (рис. 7.1), рассчитаем значение коэффициента C11, имея ввиду, что теплообменом задней поверхности резца прилегающей к вспомогательной кромке OL можно пренебречь, в связи с, чем расчетная ширина источника B = 2×b. ;

;

;

Ap = 3,06, Aд = 1, Aк = 1;

.

По рис. 7.2 при h1 = 2,66 находим А0 = 0,88.

Определяем угол b = 90 - a - g = 90 – 10 – 12 = 68°:

;

15) Составим код источника плотностью q2 на задней поверхности резца и, пользуясь алгоритмом (рис. 7.1), рассчитаем значение коэффициента C22, имея ввиду, что теплообменом задней поверхности резца, прилегающей к вспомогательной кромке OL можно пренебречь, в связи с чем расчетная ширина источника В = 2×b. ;

;

;

Ap = 3,06, Aд = 1, Aк = 1;

.

По рис. 7.2 при h2 = 70,7 находим A0 = 0,99:

;

16) С помощью графика (рис. 7.10) определяем коэффициент N2 и рассчитываем функцию C21:

при h2 = 70,7 и , при и b = 68 определяем по рис. 7.10,в значение коэффициента N2 = 1,69.

Рассчитываем функцию .

17) С помощью графика (рис. 7.10) определяем коэффициент N1 и рассчитываем функцию C12:

.

18) Напишем выражение для температур θ1 и θ2 со стороны резца

.

19) Составляем уравнение баланса температур на контактных площадках резца и заготовки и рассчитываем плотности итоговых потоков теплообмена

.

 

Решая эту систему уравнений, получим:

q1 = 6,3×107 Вт/м2;

q2= - 2,92×107 Вт/м2;

θ1 = 912 °С;

θ2 = 340 °С.

20) Определяем температуру резания:

°С.

Полученное значение температуры резания позволяет сделать вывод, что в рассматриваемом процессе необходимо применение смазочно-охлаждающих сред.







Дата добавления: 2015-08-27; просмотров: 531. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия