Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неоднозначность нахождения первообразной





Дифференцирование функции – однозначная операция, т.е. если функция имеет производную, то только одну. Это утверждение непосредственно следует из определений предела и производной: если функция имеет предел, то только один. Обратная операция – отыскание первой производной – не однозначна.

Так, функции , , , , где С – любое постоянное действительное число, являются первообразными функции , поскольку все эти функции имеют 4 x 3.

Теорема. Если является первообразной функции на некотором промежутке, то множество всех первообразных этой функции имеет вид , где С – любое действительное число.

Доказательство. Пусть . Тогда . Покажем теперь, что все первообразные функции отличаются лишь постоянным слагаемым.

Пусть – другая первообразная функции на рассматриваемом промежутке, т.е. . Тогда при всех x из рассматриваемого промежутка. Следовательно, , что и требовалось установить. Отсюда следует, что задача нахождения первообразной имеет бесконечное множество решений. Геометрически выражение представляет собой семейство кривых, получаемых из любой из них параллельным переносом вдоль оси 0Y.

Неопределённый интеграл и его свойства

Первообразную можно находить не только по данной её производной, но и по её дифференциалу.

Определение. Совокупность всех первообразных функции на рассматриваемом промежутке называется неопределённым интегралом и обозначается символом , где подынтегральная функция, подынтегральное выражение, x – переменная интегрирования.

Таким образом, если – какая-нибудь первообразная функция на некотором промежутке, то

,

где С – любое действительное число.

Наличие постоянной С делает задачу нахождения функции по её производной не вполне определённой; отсюда происходит и само название «неопределённый интеграл».

Пользуясь определением неопределённого интеграла, можно записать:

и т.д.

Поэтому, чтобы найти неопределённый интеграл от заданной функции, нужно найти какую-нибудь одну её первообразную и прибавить к ней произвольную постоянную С.

Чтобы проверить, правильно ли найден неопределённый интеграл, необходимо продифференцировать полученную функцию; если при этом получается подынтегральное выражение, то интеграл найден верно.

Например, . Сделаем проверку: или . Следовательно, интеграл найден верно.

Основные свойства неопределённого интеграла

1. Производная неопределённого интеграла равна подынтегральной функции, т.е.

.

2. Постоянный множитель подынтегрального выражения можно вынести за знак интеграла, т.е.

,

где m – постоянная величина, не равная нулю.

3. Интеграл от алгебраической суммы функций равен алгебраической сумме интегралов от этих функций, т.е.

4. Дифференциал неопределённого интеграла равен подынтегральному выражению, т.е.

5. Неопределённый интеграл от дифференциала (производной) некоторой функции равен сумме этой функции и произвольной постоянной С, т.е.

или .







Дата добавления: 2015-08-27; просмотров: 3803. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия