Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Способ интегрирования по частям





При интегрировании функций, содержащих произведения, логарифмы и обратные тригонометрические функции, бывает удобно воспользоваться способом интегрирования по частям. Выведем формулу интегрирования по частям: дифференциал от произведения равен ; в результате интегрирования имеем или . Откуда: .

Нахождение интеграла сводится к нахождению интеграла , который может оказаться или проще данного, или даже известным.

При практическом использовании формулы интегрирования по частям данное интегральное выражение представляют в виде произведения двух сомножителей, которые обозначают u и ;. Множитель u стараются выбирать так, чтобы du было проще, чем u.

Рассмотрим частные примеры интегрирования по частям.

Пример 1. Вычислить .

РЕШЕНИЕ:

Интеграл содержит произведение двух функций x и . Способ подстановки не даёт возможности найти этот интеграл. Обозначим x=u, ; тогда dx = du; . Применим формулу интегрирования по частям:

.

Приняв x=u, получили и интеграл оказался проще, чем .

Если же в данном интеграле сделать другую замену: , , то можно убедиться, что полученный интеграл окажется сложнее исходного, т.е. замена окажется неудачной. Умение определить целесообразность той или иной замены приходит с приобретением навыка.

Пример 2. Вычислить .

РЕШЕНИЕ:

.

Пример 3. Вычислить . Иногда формулу интегрирования по частям приходится применить дважды.

РЕШЕНИЕ: Имеем:

.

Для нахождения полученного в правой части равенства интеграла снова интегрируем по частям (см. решение примера 1):

.

В результате получаем окончательный ответ:

.

Пример 4. Вычислить .

РЕШЕНИЕ:

.

Определённый интеграл

Определение. Если F(x)+C – первообразная функция для f(x), то приращение F(b) – F(a) первообразных функций при изменении аргумента x от x=a до x=b называется определённым интегралом и обозначается символом , т.е. , где a – нижний предел, b – верхний предел определённого интеграла.

Функция f(x) предполагается непрерывной в промежутке изменения аргумента x от a до b.

Для вычисления определённого интеграла находят:

1) неопределённый интеграл ;

2) значение интеграла F(x)+C при x=b, C=0, т.е. вычисляют F(b);

3) значение интеграла F(x)+C при x=a, C=0, т.е. вычисляют F(a);

4) разность F(b) – F(a).

Процесс вычисления виден из формулы

.

Данное равенство называется формулой Ньютона-Лейбница.

Под F(x) в формуле понимают простейшую из первообразных функций, у которой C=0.

Так как приращение F(b) – F(a) равно некоторому числу, то определённый интеграл есть число (в отличие от неопределённого интеграла, который есть совокупность функций).

Геометрический смысл определённого интеграла заключается, очевидно, в том, что есть площадь криволинейной трапеции, определяемой графиком функции f(x) на отрезке [ a, b ].

Основные свойства определённых интегралов

При рассмотрении будем предполагать, что функция f(x) непрерывна на отрезке [ a, b ].

1. При перестановке пределов интегрирования знак интеграла меняется на противоположный:

.

2. Постоянный множитель можно вынести за знак определённого интеграла:

,

где k – постоянная величина.

3. Определённый интеграл от алгебраической суммы функций равен алгебраической сумме определённых интегралов от этих функций:

.







Дата добавления: 2015-08-27; просмотров: 519. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия