Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неявное и параметрические задания функций и их дифференцирование.





Глава 4.

Занятие 4

Неявное и параметрические задания функций и их дифференцирование.

Определение 4.1. Если функция задана формулой, то говорят, что функция задана явным образом.

Пусть . Значение такой функции легко вычислить. Нужно заданное значение аргумента подставить в формулу и сосчитать полученное выражение.

Например .

Определение 4.2. Если функция является решением некоторого уравнения, то говорят о неявном задании функции.

Вся сложность при неявном задании функции заключается в вычислении значения функции при заданном значении её аргумента.

Пример 4.1. Уравнение определяет функцию . В данном случае мы можем решить это уравнение относительно и получить явное задание .

Пример.4.2. Рассмотрим уравнение . Оно также задает функцию . Решим уравнение относительно

Таким образом, данное уравнение задаёт нам две различных явно заданных функции. Как конкретизировать функцию при её неявном задании. Очень просто нужна дополнительная информация.

Пример 4.3. Уравнение с дополнительным условием «все значения функции больше нуля» задает нам единственную функцию

Уравнение с дополнительным условием «все значения функции меньше нуля» задает нам единственную функцию

При неявном задании функции нужно заранее определить какая из двух переменных является аргументом, а какая функцией.

Например, если считать в уравнении переменную аргументом, а переменную функцией, то уравнение задаёт две функции

Если к уравнению добавить условие «при значение », то

получим только одно явное выражение для функции: .

Пример 4.4. Функция задана неявно уравнением и дополнительным условием: все значения функции положительные числа.

Решение. Решаем квадратное уравнение относительно

Так как , то ответом будет функция .

Чаще всего невозможно получить явное выражение для функции, которая задана неявно. Однако производную от функции заданной неявно получить несложно из самого уравнения. Такой алгоритм называется правилом неявного дифференцирования.







Дата добавления: 2015-08-29; просмотров: 826. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия