Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИМЕНЕНИЕ t-КРИТЕРИЯ





Для вычисления уровня статистической достоверности различия между двумя средними[2], в случае, если эти значения измерены в интервальной шкале или шкале отношений, используется t -критерий. Существует три типа t -критерия: для одной выборки, для независимых и зависимых выборок.

 

Критерий t-Стьюдента для одной выборки

, , где ошибка среднего .

Критерий t-Стьюдента для независимых выборок (примерный)

, .

Критерий t-Стьюдента для независимых выборок (точный) для выборок разных объемов

.

 

Критерий t-Стьюдента для зависимых выборок

, .

Чтобы определить величину t, потребуются формулы для вычисления SS – сумм квадратов, δ2 – дисперсии, SD – стандартного отклонения и df – степеней свободы (см. выше):

, , .

´ Задача 2.20 (вариант с одной выборкой).Выделяются ли ученики с высоким осенним СБ из всей массы учеников?

Вначале вычисляем среднее арифметическое показателя Х5, А = 4,418

После этого формируем матрицу для учеников с высоким осенним СБ и вычисляем среднее арифметическое M, отклонения D, квадраты отклонений D2, сумму квадратов отклонений SS, дисперсию δ2, стандартное отклонение SD и ошибку среднего m.

Затем определяем t -критерий Стьюдента и сравниваем его с табличным.

Номер учащихся с хорошими знаниями СБ осенний D D2
  4,6 –0,022 0,0005
  4,7 0,078 0,0060
  4,2 –0,422 0,1783
  5,0 0,378 0,1427
  3,7 –0,922 0,8505
  4,9 0,278 0,0772
  5,0 0,378 0,1427
  4,6 –0,022 0,0005
  4,9 0,278 0,0772
  М = 4,622 ΣD = 0,000 SS = 1,4756
n = 9     δ2 = 0,1844
df = 8     SD = 0,4295
      m = 0,1432

.

Обращаясь к табл. П 3.4 и имея df = 8, а уровень значимости p = 0,05, мы получаем критическое значение 2,306, которое выше рассчитанного нами.

Вывод. Средние баллытех, кто занимается лучше, статистически значимо не отличаются от СБ всей выборки (от ожидаемого среднего значения).

´ Задача 2.21 (вариант с независимыми выборками).Имеют ли учащиеся с высоким уровнем знаний более высокие осенние СБ, чем учащиеся, которые занимаются хуже? Для решения задачи необходимо сформировать матрицы для учеников с высоким осенним СБ и для учеников с низким осенним СБ, затем вычислить для каждой из выборок среднее арифметическое M, отклонения D, квадраты отклонений D2, сумму квадратов отклонений SS, дисперсию δ2, стандартное отклонение SD и ошибку среднего m. После чего определить t -крите-рий Стьюдента и сравнить его с табличным. Матрицу для учеников с высоким осенним СБ мы уже обработали в примере выше, осталось повторить аналогичные вычисления для матрицы для учеников с низким осенним СБ.

Номер учащихся со слабыми знаниями СБ осенний D D2
  3,9 –0,375 0,1406
  3,7 –0,475 0,2256
  4,4 0,225 0,0506
  4,6 0,425 0,1806
  4,0 –0,175 0,0306
  4,2 0,025 0,0006
  4,0 –0,175 0,0306
  4,7 0,525 0,2756
n = 9 М = 4,175 ΣD = 0,000 SS = 0,9350
df = 8     δ2 = 0,1336
      SD = 0,3655
df = 9 + 8 – 2 = 15     m = 0,1292

По формуле для вычисления примерного критерия t -Стьюдента для независимых выборок получаем:

.

По формуле для вычисления точного критерия t -Стьюдента для независимых выборок разных объемов получаем

Обращаясь к табл. П 3.4 и имея df = 15, а уровень значимости р = 0,05, мы выбираем критическое значение 2,131. Полученная нами величина t = 2,317превышает 2,131 и может считаться статистически значимой на уровне 0,05. Поэтому мы заключаем, что средние баллы тех, кто занимается лучше, статистически значимо отличаются от СБ тех, кто занимается хуже.

´ Задача 2.22 (вариант с зависимыми выборками).Отличается ли весенний СБ от осеннего СБ у учащихся с высоким уровнем знаний?

 

X9 X5 X6    
Номер учащихся с хорошими знаниями Осенний СБ Осенний СБ D = X5 – X6 D2
  4,6 4,0 0,600 0,360
  4,7 5,0 –0,300 0,090
  4,2 4,0 0,200 0,040
  5,0 4,9 0,100 0,010
  3,7 3,9 –0,200 0,040
  4,9 5,0 –0,100 0,010
  5,0 5,0 0,000 0,000
  4,6 3,7 0,900 0,810
  4,9 4,8 0,100 0,010
      Мd = 0,144 SS = 1,370
n = 9       δ2 = 0,171
df = 8       SD = 0,414
        m = 0,138

.

Обращаясь к табл. П 3.4 и имея df = 8, а уровень значимости 0,05, выбираем критическое значение 2,306. Подсчитанная нами величина t = 1,047 не превышает 2,306 и не может считаться статистически значимой на уровне 0,05.

Вывод. Между весенними и осенними СБ отсутствуют статистически значимые различия.

´ Задача 2.23 (дополнительный пример). Какая методика эффективнее для развития параметра А (кистевая динамометрия) путем вычисления уровня статистической достоверности различия между двумя средними по t -критерию Стьюдента на уровне значимости p < 0,05. Перед проведением эксперимента были сформированы две группы – контрольная и экспериментальная – по 12 испытуемых, которые прошли тест по параметру А.

 

КГ 68 65 71 69 64 62 62 67 59 61 65 64

ЭГ 67 68 72 65 67 61 64 61 62 69 60 65

 

По соответствующим формулам вычисляем степень свободы df и t -критерий для независимых выборок. Значения заносим в соответствующие ячейки таблицы:

  До эксперимента dfзавис =11 tзавистаб= 2,201 После эксперимента
Контрольная группа   t11-12= 2,259  
dfНЕзавис = 22 tНЕзавистаб= 2,074 t11-21= 0,227   t12-22= 2,304
Экспериментальная группа   t21-22= 2,828  

 

Выполняем расчеты, как это показано в таблице ниже (например, в программе MS Excel).

Обращаясь к табл. П 3.4 и имея df = 22 для независимых выборок, а уровень значимости 0,05, выбираем критическое значение 2,074. Рассчитанное в примере t11-21= 0,227 меньше табличного, поэтому: тесты по параметру А, выполненные перед проведением эксперимента, показали, что статистически достоверных различий между группами КГ и ЭГ по параметру А нет.

Вывод. В таких условиях МОЖНО начинать проводить эксперимент.

 

В течение двух недель испытуемые КГ тренировались по методике F, а экспериментальной – по методике G. Затем было проведено повторное тестирование параметра А:

 

КГ 72 68 71 69 67 64 63 67 61 62 64 65

ЭГ 69 70 74 72 69 65 68 70 64 72 68 68

 

По соответствующим формулам вычисляем степень свободы df и t -критерий для зависимых выборок.

Подсчитанные нами величины t указывают, что после 2 недель тренировок в обеих группах произошли статистически достоверные изменения. Статистически достоверно (t12-22= 2,304) стали различаться и данные КГ и ЭГ, а показатель экспериментальной группы t21-22= 2,828больше показателя контрольной группы t11-12= 2,259.

Обращаясь к табл. П 3.4 и имея df = 22 для независимых и df = 22 для зависимых выборок, а уровень значимости 0,05, выбираем критические значения – соответственно 2,074 для независимых и 2,201 для зависимых выборок.

Вывод. Методика G экспериментальной группы оказалась более эффективной, чем методика F, которая применялась для развития параметра А в контрольной группе.

 

КГ A1 D D2   A2 D D2   Dзавис D2
    3,3 10,6     5,9 35,0   –4  
    0,3 0,1     1,9 3,7   –3  
    6,3 39,1     4,9 24,2      
    4,3 18,1     2,9 8,5      
    –0,8 0,6     0,9 0,8   –3  
    –2,8 7,6     –2,1 4,3   –2  
    –2,8 7,6     –3,1 9,5   –1  
    2,3 5,1     0,9 0,8      
    –5,8 33,1     –5,1 25,8   –2  
    –3,8 14,1     –4,1 16,7   –1  
    0,3 0,1     –2,1 4,3      
    –0,8 0,6     –1,1 1,2   –1  
  М = 64,8 0,0 SS = 136,3   М = 66,1 0,0 SS = 134,9   М = –1,3 SS = 46
      δ2 = 12,4       δ2 =12,3     δ2 = 4,2
      m = 1,0         m = 1,0     m = 0,6
ЭГ A1 D D2   A2 D D2   Dзавис D2
    1,9 3,7     –0,1 0,0   –2  
    2,9 8,5     0,9 0,8   –2  
    6,9 47,8     4,9 24,2   –2  
    –0,1 0,0     2,9 8,5   –7  
    1,9 3,7     –0,1 0,0   –2  
    –4,1 16,7     –4,1 16,7   –4  
    –1,1 1,2     –1,1 1,2   –4  
    –4,1 16,7     0,9 0,8   –9  
    –3,1 9,5     –5,1 25,8   –2  
    3,9 15,3     2,9 8,5   –3  
    –5,1 25,8     –1,1 1,2   –8  
    –0,1 0,0     –1,1 1,2   –3  
  М = 65,1 0,0 SS = 148,9   М = 69,1 0,0 SS = 88,9   М = –4,0 SS = 264
      δ2 =13,5       δ2 = 8,1     δ2 = 24,0
      m = 1,1       m = 0,8     m = 1,4







Дата добавления: 2015-08-29; просмотров: 451. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия