Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Использование степенных рядов





Степенные ряды применяют при вычислении определенных интегралов. Для этого раскладывают подынтегральную функцию в степенной ряд и вычисляют полученный интеграл почленно.

I

.

В тех случаях, когда не удается решить дифференциальное уравнение, его можно решить с помощью рядов.

I Рассмотрим линейное дифференциальное уравнение второго порядка с переменными коэффициентами . Это уравнение не соответствует ни одному из трех типов дифференциальных уравнений, допускающих понижение порядка.

Предположим, что функция , являющаяся решением уравнения, разложена в степенной ряд . Тогда , .

Подставим это разложение в дифференциальное уравнение .

Заменим в первой сумме , .

Это уравнение преобразуется в тождество, если равны коэффициенты при одинаковых степенях x:

: , : , : ,

: ,... : .

Из последнего равенства следует: , и рекуррентное соотношение , которое позволяет выразить остальные коэффициенты через , , , :

, , ,

или

 

В результате точное общее решение уравнения имеет вид:

, или

Приближенное частное решение задачи Коши можно определять другим способом:

I , если , .

Воспользуемся разложением решения в ряд Маклорена .

Найдем производные, подставляя в исходное уравнение начальные условия и дифференцируя его.

, , , , ,

,...

Получим приближенное решение

 







Дата добавления: 2015-08-29; просмотров: 433. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия