Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Использование степенных рядов





Степенные ряды применяют при вычислении определенных интегралов. Для этого раскладывают подынтегральную функцию в степенной ряд и вычисляют полученный интеграл почленно.

I

.

В тех случаях, когда не удается решить дифференциальное уравнение, его можно решить с помощью рядов.

I Рассмотрим линейное дифференциальное уравнение второго порядка с переменными коэффициентами . Это уравнение не соответствует ни одному из трех типов дифференциальных уравнений, допускающих понижение порядка.

Предположим, что функция , являющаяся решением уравнения, разложена в степенной ряд . Тогда , .

Подставим это разложение в дифференциальное уравнение .

Заменим в первой сумме , .

Это уравнение преобразуется в тождество, если равны коэффициенты при одинаковых степенях x:

: , : , : ,

: ,... : .

Из последнего равенства следует: , и рекуррентное соотношение , которое позволяет выразить остальные коэффициенты через , , , :

, , ,

или

 

В результате точное общее решение уравнения имеет вид:

, или

Приближенное частное решение задачи Коши можно определять другим способом:

I , если , .

Воспользуемся разложением решения в ряд Маклорена .

Найдем производные, подставляя в исходное уравнение начальные условия и дифференцируя его.

, , , , ,

,...

Получим приближенное решение

 







Дата добавления: 2015-08-29; просмотров: 433. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия