Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Использование степенных рядов





Степенные ряды применяют при вычислении определенных интегралов. Для этого раскладывают подынтегральную функцию в степенной ряд и вычисляют полученный интеграл почленно.

I

.

В тех случаях, когда не удается решить дифференциальное уравнение, его можно решить с помощью рядов.

I Рассмотрим линейное дифференциальное уравнение второго порядка с переменными коэффициентами . Это уравнение не соответствует ни одному из трех типов дифференциальных уравнений, допускающих понижение порядка.

Предположим, что функция , являющаяся решением уравнения, разложена в степенной ряд . Тогда , .

Подставим это разложение в дифференциальное уравнение .

Заменим в первой сумме , .

Это уравнение преобразуется в тождество, если равны коэффициенты при одинаковых степенях x:

: , : , : ,

: ,... : .

Из последнего равенства следует: , и рекуррентное соотношение , которое позволяет выразить остальные коэффициенты через , , , :

, , ,

или

 

В результате точное общее решение уравнения имеет вид:

, или

Приближенное частное решение задачи Коши можно определять другим способом:

I , если , .

Воспользуемся разложением решения в ряд Маклорена .

Найдем производные, подставляя в исходное уравнение начальные условия и дифференцируя его.

, , , , ,

,...

Получим приближенное решение

 







Дата добавления: 2015-08-29; просмотров: 433. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия