Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные определения. Пусть M – некоторое числовое множество





Функциональные последовательности и ряды

Пусть M – некоторое числовое множество

Если каждому натуральному числу n поставлена в соответствие некоторая функция определенная на множестве M, то говорят, что на множестве M задана функциональная последовательность

. (1)

При каждом фиксированном функциональная последовательность (1) превращается в числовую .

I , .

.

.

 

 

Пусть на множестве M определена функциональная последовательность и при функциональная последовательность (1) превращается в сходящуюся числовую последовательность . Тогда говорят, что функциональная последовательность (1) сходится в точке .

I Функциональная последовательность сходится в точках

, ,

, ,

.

Если функциональная последовательность сходится в каждой точке множества M, говорят, что она сходится на множестве M.

I Функциональная последовательность сходится на множестве

Пусть функциональная последовательность (1) сходится на множестве M и функция, которая на множестве M определяется формулой

, (2)

тогда называется предельной функцией функциональной последовательности (1) на множестве M.

I Найдем предельную функцию

функциональной последовательности

, , .

При ,

При ,

При .

Таким образом, предельная функция имеет вид .

 

Пусть на множестве M определена функциональная последовательность , тогда выражение

или

(3)

называется функциональным рядом на множестве M (функциональный ряд).

При каждом фиксированном функциональный ряд (3) превращается в числовой ряд.

 

Пусть на множестве M задан функциональный ряд тогда функции

(4)

называются частичными суммами функционального ряда.

 

Говорят, что функциональный ряд (3), заданный на множестве M сходится или расходится в точке , если в этой точке сходится или расходится функциональная последовательность частичных сумм функционального ряда, т.е. сходится или расходится числовой ряд .

 

Пусть функциональный ряд (3) сходится на числовом множестве M и - предельная функция функциональной последовательности частичных сумм функционального ряда (4), тогда эту функцию называем суммой данного функционального ряда и пишут

. (5)

Очевидно, при каждом является обычной суммой числового ряда .







Дата добавления: 2015-08-29; просмотров: 408. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия