Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные свойства степенных рядов





Пусть дан степенной ряд (2) с радиусом сходимости R>0.

Th 1. О равномерной сходимости степенного ряда

Каково бы не было число , то степенной ряд (2) равномерно сходится на любом отрезке .

Возьмем . Так как принадлежит области сходимости ряда (2), то числовой ряд сходится, а он является мажорирующим рядом для степенного ряда (2) на отрезке : при всех . Ряд (2) на отрезке сходится равномерно (в силу достаточного признака Вейерштрассе о равномерной сходимости функционального ряда).

Th 2. О непрерывности суммы степенного ряда

Сумма ряда (2) на интервале является непрерывной функцией.

Пусть - произвольная точка. Пусть . На отрезке ряд (2) в силу Th 1 сходится равномерно его сумма в силу теоремы о непрерывности суммы функционального ряда непрерывна на отрезке , а значит и в точке . А так как - произвольная точка интервала , то теорема доказана.

Из теорем о равномерной сходимости степенного ряда и теорем о почленном дифференцировании и интегрировании равномерно сходящихся функциональных рядов вытекают следующие теоремы.

Th 3. О почленном интегрировании степенного ряда.

Степенной ряд (2) можно почленно интегрировать от 0 до любого .

Th 4. О почленном дифференцировании степенного ряда.

Степенной ряд (2) можно почленно дифференцировать на интервале .







Дата добавления: 2015-08-29; просмотров: 498. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия