Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нелинейная парная регрессия





Если между результативным и факторным признаком существует нелинейная зависимость, то она выражается с помощью соответствующих нелинейных функций.

Для описания нелинейной связи между и используют следующие виды функций:

1) параболическая ;

2) кубическая парабола ;

4) гиперболическая ;

5) логарифмическая ;

6) степенная ;

7) показательная ;

8) экспоненциальная ;

9) логистическая

и некоторые другие.

Здесь – неизвестные параметры (коэффициенты регрессии), подлежащие определению. Необходимо подобрать значения этих параметров, обеспечивающие наилучшее приближение теоретической функцией эмпирических данных.

Различают 2 класса нелинейных регрессионных моделей:

1) регрессии, нелинейные относительно переменных, но линейные по параметрам (полиномы разных степеней, гипербола и др.);

2) регрессии, нелинейные по оцениваемым параметрам (степенная, показательная, экспоненциальная и др.).

Если коэффициенты регрессии входят в регрессионную модель линейно, то метод наименьших квадратов приводит к системе линейных алгебраических уравнений относительно искомых коэффициентов. В противном случае – к нелинейной системе уравнений.

Так в случае выбора теоретической функции в виде полинома k –й степени (функция линейна относительно параметров), исходя из критерия метода наименьших квадратов

(вычисляя и приравнивая нулю частные производные , ), получим линейную систему уравнений

Решая эту систему, найдем неизвестные параметры .

В случае параболической регрессионной модели коэффициенты регрессии определяются из системы линейных уравнений

 

 

Если в качестве теоретической функции выбрана гиперболическая функция, то параметры регрессии определяются из линейной системы

Если модель нелинейна относительно параметров регрессии, то она в ряде случаев с помощью соответствующих преобразований может быть приведена к линейному виду.

Если же модель не может быть приведена к линейному виду, то для оценки параметров в этом случае приходиться решать системы нелинейных уравнений, используя итерационные методы. В этом случае успех в нахождении параметров регрессии зависит от сложности полученной системы.

 







Дата добавления: 2015-08-30; просмотров: 882. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.016 сек.) русская версия | украинская версия