Двухвыборочный t-тест для связанных выборок (Paired sample T-TEST)
Если на одних и тех же объектах дважды измеряется некоторое свойство, то проверка значимости различия средних по измеренным переменным осуществляется этим тестом. Пример задания команды: T-TEST PAIRS = x WITH y (PAIRED) /CRITERIA = CIN(.95). Переменные x и y могут быть характеристиками мужа и жены при исследовании семей; по данным RLMS – измерениями, связанными с потреблением напитков в 1996 и 1998 г., и т. п. Поэтому данная процедура полезна для анализа панельных данных. Почему же здесь нельзя воспользоваться таким же анализом, как и для двух несвязанных выборок, считая, что имеются две выборки одинакового объема? Проверка значимости различия матожиданий x и y эквивалентна проверке гипотезы о равенстве нулю математического ожидания разности x - y. Дисперсия разности x - y равна D (x - y)= D (x) + D (y) - 2 cov (X,Y). Отсюда точность оценки матожиданий x - y связана с ковариацией x и y. Поэтому наряду с соответствующей статистикой в выдачу по этому тесту входит и коэффициент корреляции этих переменных и наблюдаемая значимость. Для примера взгляните на выдачу, в которой сравниваются вес 1995 и 1996 г. женщин от 30 до 40 лет (в 1995 г.), табл. 4.5 – 7, данные RLMS. Таблица4. 5 T-тест на связанных выборках, описательные статистики
Таблица4. 6 T-тест на связанных выборках, корреляции
Таблица4. 7 T-тест на связанных выборках, сравнение средних
Женщины в среднем набрали по полкилограмма веса, и этот прирост статистически значим. Значим и коэффициент корреляции – вес в целом имеет свойство сохраняться. 4.1.4. Команда MEANS – сравнение характеристик числовой переменной по группам Процедура вычисляет одномерные статистики в группах – все описательные статистики, которые вычислялись командами DESCRIPTIVES и FREQUENCIES, а также гармоническое среднее, среднее геометрическое, проценты сумм значений переменных в группах и др. – всего 20 характеристик. Поэтому имя команды MEANS (cредние) сохранилось лишь «исторически», оно пришло из ранних версий SPSS, где ее назначением, действительно, было сравнение средних. В диалоговом окне для назначения статистик используется кнопка Options. Проводится также одномерный дисперсионный анализ. MEANS TABLES = v14 BY v11 BY v8 /CELLS MEAN STDDEV MEDIAN COUNT /STATISTICS ANOVA. В команде указывается список зависимых переменных, BY и список переменных, определяющих группы. Каждое дополнительное слово BY порождает следующий нижний уровень группирования, в диалоговом режиме слову BY соответствует кнопка Next. Анализ результатов (табл. 4.8) позволяет сделать следующие выводы. Самый высокий среднемесячный доход (332 р.) имеют разведенные мужчины, при этом он значительно превосходит среднемесячный доход, полученный всеми разведенными (249 р.) и всеми мужчинами (238 р.). На втором месте по доходам находятся вдовцы (276 р.), но их всего 5 человек, поэтому цифра ненадежна. Среди женщин наиболее высокие среднемесячные доходы (226 р.) у состоящих в браке, что почти равно доходам женатых мужчин. Это естественно – ведь это же душевой доход в семье. Мы можем сколько угодно описывать эту таблицу, но описание не будет доказательством какой-либо истины, пока оно не подтверждено статистическим выводом. Такая таблица может быть только источником гипотез о взаимосвязи, которые в дальнейшем следует проверить. Одномерный дисперсионный анализ здесь проводится только по переменным первого уровня задания групп. Напомним, что суть этого анализа состоит в вычислениии межгруппового квадратичныого разброса зависимой переменной SSв (Between groups) и внутригруппового разброса, обозначается SSw (Within groups). Величина SSв характеризует, насколько сильно отклонились от общего среднего средние между группами, а SSw – отклонения от центров групп. Статистика в условиях гипотезы равенства средних и дисперсий распределения при нормальном распределении X в группах имеет распределение Фишера. F представляет собой в определенном смысле расстояние наблюдаемой таблицы от таблицы, в которой нет никаких зависимостей, т. е. средние в группах совпадают. Чем больше F, тем существеннее зависимость, однако сама по себе величина F ни о чем не говорит. Ответ на вопрос дает, как обычно, величина наблюдаемой значимости F -критерия: Significance – вероятность случайно получить значение F, большее выборочного Sig=P{ F > F выб. }. Таблица4. 8 Среднемесячный душевой доход в семье
Еще раз обратим внимание на то, что в таком анализе используется предположение о нормальности распределения зависимой переменной. Не следует проводить непосредственно дисперсионный анализ переменных с существенно отличающимся от нормального распределением. В табл. 4.9. приведена выдача одномерного дисперсионного анализа после выполнения команды MEANS TABLES = lnv14m BY v11 BY v8 /STATISTICS ANOVA. Наблюдаемый уровень значимости 0,707 свидетельствует о том, что на наших данных указанным методом связь не обнаруживается. Таблица4. 9 Результаты однофакторного дисперсионного анализа
|