Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тест хи-квадрат





Критерий хи-квадрат основан на статистике

,

где – ожидаемая частота i -го значения переменной, Ni – расчетная. Теоретическое распределение этой статистики при больших N совпадает с распределением хи-квадрат. Число степеней свободы теоретического распределения полагается равным k – 1, где k – число значений исследуемой переменной. Эмпирическое правило говорит о том, что некорректно применять критерий, если ожидаемые частоты меньше 5, поскольку его распределение в этом случае не будет близко к теоретическому. Но использование точных методов вычисления значимости (метод Монте-Карло) позволяет избежать этого ограничения.

Пример. Пусть согласно статистическим данным 30 % трудоспособного населения имеет возраст до 30 лет, 30 % от 30 до 40 лет и 40 % свыше 40 лет. Соответствует ли выборочное распределение признака «возраст» в обследовании «Курильские острова» распределению возраста в генеральной совокупности?

RECODE v9 (1 THR 30 = 1)(31 THR 40 = 2)(41 THRU HI = 3) INTO w9.

NPAR TESTS /CHISQUARE = W9 /EXPECTED 3 3 4.

Подкоманда /CHISQUARE задает тестируемую переменную; в подкоманде /EXPECTED задаем через пробел ожидаемые пропорции распределения.

Выполнение этих команд позволяет получить значение критерия и оценить степень соответствия нашей выборки распределению генеральной совокупности (табл. 5.1, 5.2).

Таблица5. 1

Наблюдаемые и ожидаемые частоты

  Observed N Expected N Residual
      –35
       
       
Total      

Таблица5. 2

Статистика хи-квадрат

  W9
Chi-Square 8,333
Df  
Asymp. Sig. 0,016

Анализируя табл. 5.1, уже по отклонениям расчетных значений от ожидаемых (см. столбец Residual), видим, что эмпирическое распределение сильно отличается от теоретического. Достаточно высокое значение критерия (Chi-Square = 8,333, табл. 5.2) малоинформативно. Ответ о совпадении на­шего распределения с теоретическим заключен в анализе наблюдаемого уровня значимости. Его малая величина (Asymp. Sig. = 0,016) показывает, что полученные отклонения значимы: вероятность получить большие значения хи-квадрат равна 1,6 %, гипотеза о соответствии выборки указанной генеральной совокупности может быть отвергнута на уровне значимос­ти 5 %.

Таким образом, для данного случая тест показал существенное различие теоретического и эмпирического распределений.

Приведем пример применения метода статистического моделирования Монте-Карло. В этом примере производится 100 000 экспериментов по моделированию выборки из генеральной совокупности с заданными вероятностями (p 1=0,3, p 2=0,3, p 3=0,4):

NPAR TEST /CHISQUARE = w9 /EXPECTED = 3 3 4
/METHOD = MC CIN(99) SAMPLES(100000).

Естественно, при такой большой выборке был получен тот же результат (табл. 5.3). Уровень значимости оценивается этим методом приближенно, на основании статистических экспериментов – чем больше экспериментов, тем точнее. Поскольку оценка значимости получена на основе случайных экспериментов, выдается доверительный интервал для уровня значимости (99 %-й по умолчанию). Точечная оценка наблюдаемого уровня значимости (Monte Carlo Sig) совпадает с асимптотической оценкой (Asymp. Sig., табл. 5.3), «оптимистическая» нижняя граница равна 0,015, «пессимистическая» верхняя – 0,017. Таким образом, во всех отношениях отклонение распределения значимо.

Таблица5. 3

Значимость критерия хи-квадрат

      W9
Chi-Square     8,333
Df      
Asymp. Sig.     0,016
Monte Carlo Sig Sig.   0,016
  99 % Confidence Interval Lower Bound 0,015
    Upper Bound 0,017






Дата добавления: 2015-08-30; просмотров: 608. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия