Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Классическая линейная модель регрессионного анализа





В линейной модели предполагается, что зависимая переменная y связана со значениями независимых показателей xk (факторов) формулой [2]

.

Традиционные названия «зависимая» для y и «независимые» для xk отражают не столько статистический смысл, сколько их содержательную интерпретацию.

Величина e i называется ошибкой регрессии. В классической модели предполагается, что регрессионные ошибки независимы и распределены нормально с параметрами N (0,σ2). Кроме того, в данной модели мы рассматриваем переменные x как неслучайные значения. Такое на практике получается, когда идет активный эксперимент, в котором задают значения x (например, назначили зарплату работнику), а затем измеряют y (оценили, какой стала производительность труда). Поэтому зависимую переменную иногда называют откликом. Теория регрессионных уравнений со случайными независимыми переменными сложнее, но известно, что при большом числе наблюдений использование метода, разработанного для случайных X, корректно.

Для получения выборочных оценок bk коэффициентов Bk регрессии минимизируется сумма квадратов ошибок регрессии:

.

Решение задачи сводится к решению системы линейных уравнений относительно bk.

На основании оценок регрессионных коэффициентов рассчитываются оценки значений y:

.

По сути дела, эти оценки являются оценками математического ожидания Y при заданных значениях X.

О качестве полученного уравнения регрессии можно судить, исследовав – оценки случайных ошибок уравнения. Оценка дисперсии случайной ошибки получается по формуле .

Величина S называется стандартной ошибкой регрессии. Чем меньше величина S, тем лучше уравнение регрессии описывает независимую переменную y.

Так как мы ищем оценки b k, используя случайные данные, то они, в свою очередь, будут представлять случайные величины. В связи с этим возникают вопросы:

1. Существует ли регрессионная зависимость? Может быть, все коэффициенты регрессии в генеральной совокупности равны нулю, оцененные их значения ненулевые только благодаря случайным отклонениям данных?

2. Существенно ли влияние на зависимую переменную отдельных независимых переменных?

В пакете вычисляются статистики, позволяющие решить эти задачи.

6.1.1. Существует ли линейная регрессионная зависимость?

Для проверки одновременного отличия всех коэффициентов регрессии от нуля проведем анализ квадратичного разброса значений зависимой переменной относительно среднего. Его можно разложить на две суммы следующим образом:

.

В этом разложении обычно обозначают:

– общую сумму квадратов отклонений;

– сумму квадратов регрессионных отклонений;

– разброс по линии регрессии.

Статистика в условиях гипотезы равенства нулю регрессионных коэффициентов имеет распределение Фишера, и, естественно, по этой статистике проверяют, являются ли коэффициенты B 1, …, B p одновременно нулевыми. Если наблюдаемая значимость статистики Фишера мала (например, sig F =0,003), то это означает, что данные распределены вдоль линии регрессии и гипотеза отвергается; если значимость велика (например, Sign F =0,12), то, следовательно, данные не связаны такой линейной связью, гипотеза не отвергается.







Дата добавления: 2015-08-30; просмотров: 503. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия